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Abstract

In the real world we deal with information | still and moving images, speech, and

sound, for example | in an analog form. In order to transmit this information over

the Internet, or store it onto a hard disk, it must be digitized. Data compression is

the process of representing the information digitally while striving to simultaneously

minimize the number of bits needed to represent the data, maximize the quality of

the reproduced data, and minimize the computational complexity required to do the

encoding and decoding.

Nearest-neighbor vector quantization (VQ) is a simple but e�ective technique for

performing data compression on a vector. A vector is encoded to the nearest neighbor

in a �nite codebook of possible reproduction vectors, that is, the reproduction with the

least distortion from the original. Computation of the distortions during the search

contributes most of the complexity. When the data to be quantized is a sequence

of vectors, performance can be improved in theory by using state information kept

coherently at the encoder and decoder to avoid encoding redundant information.

Finite-state VQ (FSVQ) has a �nite number of states, each with a codebook used for

nearest-neighbor VQ; the next state in the sequence is a function of the current state

and index. However, no techniques are known for optimal design of the next-state

function, and allowing only �nite states constrains performance.

A novel system which uses the regression properties of feedforward neural networks

is presented. A neural network observing the original vector generates a probability

distribution over the possible indices, from which one is chosen stochastically. Al-

though this is suboptimal compared to nearest-neighbor VQ, there is no computation

of distortions. Furthermore, unlike FSVQ, a state-feedback extension to this scheme
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with a continuous state vector and a second neural network (to generate the next state

and reproduced vector) has an optimal training procedure. The main disadvantage

of this scheme is the lengthy training time, typical of neural networks. Experimen-

tal results comparing this system to FSVQ, and to CELP (for speech coding) are

presented.
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Chapter 1

Introduction

Data compression is a fundamentally simple problem. One wishes to represent some

data with a small number of bits, then reconstruct the data at high quality, and do all

this with minimal computation. However the di�ering balance between these three

factors allows many di�erent techniques for data compression each to be \the best"

for a di�erent application. This openness to new methods makes the research �eld of

data compression vibrant, diverse, and interesting.

This dissertation introduces a novel method for data compression which uses ideas

from the �eld of neural networks. The technique is unlike any previous method

for vector quantization, but traditional optimality principles are considered. This

method is most useful when used with state-feedback and applied to data sources

with memory, which describes nearly every data source of practical interest.

Chapter 2 introduces the general notion of regression, and the speci�c idea of the

multi-layer feedforward neural network with its backpropagation training procedure.

Chapter 3 introduces the vector quantization (VQ) approach to data compression and

the concept of Lloyd-optimality, as well as relevant speci�c topics in VQ, including

VQ with state feedback. In Chapter 4 the memoryless form of stochastic VQ using

a feedforward neural network is presented. A training procedure is derived and opti-

mality (or lack thereof) is discussed. Chapter 5 presents the state-feedback extension

to the memoryless stochastic VQ of Chapter 4, along with a training procedure. This

scheme has some immediately notable advantages over �nite-state VQ (FSVQ, the

1



Chapter 1: Introduction 2

classical extension of VQ to using state feedback), such as a continuous state vector

and not calculating the distortion measure. Chapter 6 presents the results of two

experiments with the system of Chapter 5: a comparison to FSVQ for benchmark

data, and a comparison to CELP for low-rate speech coding. Finally, Chapter 7

summarizes the conclusions drawn from this work, and discusses future directions for

research in this area.



Chapter 2

Regression and Neural Networks

2.1 Regression

A common problem in statistics and engineering is to estimate the value of a variable

(or set of variables) from the value of another variable (or set of variables), when

there is a relationship between these variables. An example would be to estimate the

height and age of people from their weight and shoe size. Such problems are known

as \data �tting" or \data modeling" problems, and there are other names for this

type of problem in di�erent �elds of study.

Implicit in data �tting problems is a performance measure appropriate for the

particular data domain. This measure is often a function measuring the error be-

tween the estimated values and the \actual" values. A common example of such an

error function is mean squared error (MSE), which is the squared di�erence between

estimated and actual values.

If the problem domain is one for which there is a well-developed theory about the

relationship underlying the variables, then the best way to �t the data is often the

direct application of the theory. On the other hand, if little is known in theory about

the problem, but a lot of sample data is available, then regression techniques can be

very useful.

Regression is the use of a parametric function to do the estimation. The values of

3



Chapter 2: Regression and Neural Networks 4

the variables to be estimated (outputs) are taken to be a function of the observable

variables (inputs) and of a set of adjustable parameters. The success of a regression

model depends on the type of function, the number of parameters, and the values of

the parameters.

Let all the input variables be collected into vector x and all the outputs of the

regression function be vector ŷ, an estimate of the true value of y. The simplest case

of regression \function" is a constant estimate,

ŷ = yconstant; (2.1)

in which case the only parameters of the function are yconstant. A commonly used

regression function is a linear �tting,

ŷ =Wx; (2.2)

where the parameters are in matrixW. A�ne �tting is linear �tting with a constant

o�set, that is,

ŷ =Wx+ b; (2.3)

where now the parameters are in matrixW and vector b. A quadratic �t consists of

a weighted sum of all polynomial terms of order 2 or lower. If the vector (x; 1) is the

vector x concatenated with a 1 as the �nal component, then the quadratic �t can be

expressed as

ŷ =

0
BBBBB@
(x; 1)TW1(x; 1)

(x; 1)TW2(x; 1)
...

(x; 1)TWK(x; 1)

1
CCCCCA ; (2.4)

where xT here denotes the transpose of x, and where Wk is the kth (square) matrix

of parameters for this second-order polynomial, and there are K components of ŷ.

For ŷ of dimension K and x of dimension L, a polynomial �t of general order M may

be expressed as

ŷk =
X

wk;m1;m2;::: ;mL
xm1

1 xm2

2 � � �xmL

L ; 8k (2.5)
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where the sum is over all combinations of nonnegative integers ml such that

LX
l=1

ml �M; (2.6)

and all the wk;m1;m2;::: ;mL
values are parameters of the �t. The number of possible

regression functions is unlimited.

For a given choice of regression function, the parameter values must be chosen to

optimize performance. A common technique is to gather a number of co-occurrence

values of x and y, then from that data set randomly select a subset to be used, along

with a training procedure, to train the parameter values. This data set is known

as the \training set." The training procedure, if one exists, depends on the type of

regression function. Another set of data, randomly chosen from the set of all data

exclusive of training set data, is used to evaluate the performance after or during the

training procedure. This data set is known as the \testing set."

A regression function which, after training, models the training set very well but

models the testing set poorly is said to \over�t" the training data. Figures 2.1 and 2.2

show an example of an over�tting situation where x and y are scalars. In Figure 2.1,

points representing the testing set (generated for this example by a 5-degree poly-

nomial function plus Gaussian noise) were used to �nd the optimal parameters for

a 15-degree polynomial �t, shown as the light gray line. Although this �t appears

to be very good in Figure 2.1, a comparison in Figure 2.2 of this �t with some more

data points not in the training set | a testing set | shows that the �t is not so suit-

able for novel data. Often over�tting is a symptom of a regression function with too

many parameters, also known as \too many degrees of freedom." Using a \smaller"

function, that is fewer parameters, may mitigate the over�tting, as may choosing a

di�erent type of regression function. The possibility of over�tting is one reason that

the testing set must be used to evaluate the performance of a regression function,

rather than the training set.

The opposite problem, \under�tting," is also possible. Under�tting is the condi-

tion of poorly modeling both the training set and the testing set. Again, Figures 2.1

and 2.2 show an example of an under�tting situation. The medium-gray line shows
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Number of Parameters

E
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F
it testing set

training set

function type A

function type B

Figure 2.3: Comparison of Function Types and Number of Parameters for Regression

a 2-degree polynomial �t to the training data, which is in fact an equally poor �t for

both training set and testing set. Often under�tting is a symptom of a regression

function with too few parameters, also known as \too few degrees of freedom."

The best number of parameters to use for a polynomial �t of the data in the

example of Figures 2.1 and 2.2 happens to be 5, as shown by the black line in both

�gures. While the 5-degree polynomial does not �t the training data as well as the

15-degree polynomial, the �t of the testing data | which is the essential criterion |

is much better than the 15-degree �t and the 2-degree �t.

Figure 2.3 illustrates the choice of type of function and number of parameters.

For a given type of function, the optimal number of parameters is the one for which

testing set performance is best, shown as the black dots. This often occurs at nearly

the number of parameters for which over�tting begins to be a problem. Then, to

decide between multiple types of regression function, the type is chosen which has

the best performance at its optimal number of parameters. In the example shown,

function type B should be used with the number of parameters for the best testing

set �t (the black dot). Although in practice it is usually not possible to try out all
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numbers of parameters for a given function type, and it is certainly not possible to

try out all function types, this gives a general criterion for choosing one combination

of function type and number of parameters over another.

2.2 Linear Regression

One common type of regression problem requires minimizing the mean squared error

of a linear or a�ne regression function. This is commonly known as the linear least

squares �tting problem.[30] Note in the following discussion that a�ne regression may

be made to appear like linear regression by allowing x an extra component which is

permanently �xed at 1; therefore these \linear" methods may also be used for a�ne

regression. Two useful methods can be employed to optimize the parameter values

for this situation.

2.2.1 Wiener-Hopf

The �rst is the \Wiener-Hopf" method, which �nds the optimal matrix of parameters

W� = argmin
W

E[ky� ŷk2] (2.7)

= argmin
W

E[ky�Wxk2]; (2.8)

where kzk2 denotes the sum of squared components of a vector z. The error is a

quadratic function of W, and is minimized by

W� = PR�1; (2.9)

where R is the autocorrelation of x,

R = E[xxT ]; (2.10)

and where P is the cross-correlation of x and y,

P = E[yxT ]: (2.11)
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Wiener-Hopf has the advantage of being a one-step method (as opposed to an iterative

method) . Wiener-Hopf can fail if the matrix R is singular and therefore cannot be

inverted. Similarly, if R is nearly singular, the inverse can be \poorly conditioned,"

meaning that there is a very high sensitivity to numerical precision. This is the mul-

tidimensional analog to the scalar case of division by a number which is nearly zero.

Thus techniques such as ridge regression must be used to modify the parameters.[23]

2.2.2 Least Mean Squares (LMS)

The second method often used is the \least mean squares" (LMS) method, a stochastic

gradient descent method also known as the Widrow-Ho� method.[34]

In general, gradient descent [22] is an optimization method for �nding the value

of parametersW which minimizes an objective function "(W), a continuous and dif-

ferentiable function of W. An initial value forW is selected (for example, randomly)

and then W is iteratively adjusted along the gradient of the objective " by

Wnext =Wcurrent� �
@"

@Wcurrent

; (2.12)

where � is a positive constant known as the \learning rate." In a small enough

neighborhood of Wcurrent, "(W) appears as a hyperplane which slopes down fastest

in the direction opposite the gradient @"
@Wcurrent

. Therefore a small enough value of �

will cause each iteration to be a step downward in the direction of steepest descent of

". After a certain number of iterations, gradient descent will eventually reach a �xed

point at a local minimum.

Gradient descent is well suited to the linear least squares problem, since the error

"(W) = E[ky� ŷk2] = E[ky�Wxk2] (2.13)

is a quadratic function ofW. This implies that the error surface is a smooth quadratic

\bowl" with a single minimum, therefore gradient descent can �nd the global mini-

mum. In practice, the choice of value of � resembles the overdamping / underdamping

/ critical damping scenario commonly seen in engineering problems.

Rather than compute the exact gradient of the error as in Equation 2.13, LMS is

stochastic in that a single novel training pair sample fxk;ykg is used to determine
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an estimate of the gradient for each iteration k. That is, since the true error is an

expectation over all training pairs fxk;ykg,

" = Ek[kyk �Wxkk2] (2.14)

= Ek["k]; (2.15)

then " can be estimated stochastically by "k. Similarly, @"
@W

can be estimated sto-

chastically by

@"k

@W
=
@[(yk �Wxk)

T (yk �Wxk)]

@W
(2.16)

= �2(yk �Wxk)x
T
k : (2.17)

The iterative learning rule then becomes

Wnext =Wcurrent+ 2�(yk �Wxk)x
T
k : (2.18)

One of the most common applications of the LMS algorithm is for adaptive linear

�lters, in which case the training values fxkg are successive states of a tapped delay

line, and W represents the �lter weights.

LMS has some advantages over Wiener-Hopf. First, there is no matrix inversion

involved. Therefore there are no matrix singularity or near-singularity problems.

Also, depending on the number of iterations needed to converge to near the optimum,

and the number of components of the input and output vectors, LMS may have less

complexity than Wiener-Hopf. Second, while Wiener-Hopf is a one-time solution for

a given training set, LMS can continuously adapt the parameters if the optimal values

are changing over time, due to a change in the process being modeled. For example,

LMS may be used as an adaptive equalizer to compensate for the �ltering e�ected

by a radio channel link between a mobile telephone and a base station receiver. As

the position of the mobile telephone changes during the connection, a change in the

channel requires continuous adaptation of the equalizer.
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2.3 Nonlinear Regression

It is possible to build on the linear/a�ne regression function by applying some non-

linear function to the vector result of the linear or a�ne operation. This nonlinear

function could be considered �xed, or could depend on parameters which are included

in the set of adjustable parameters of the entire regression function. If the class of

\nonlinear" functions allowed includes linear multiplication by the identity matrix

(that is, just passing the inputs to the outputs) then clearly the linear/a�ne function

is a subset of all such allowable regression functions. Therefore performance can only

be improved or kept the same by considering the addition of a nonlinear function.

2.3.1 Perceptrons

One type of problem which suggests a particular choice of nonlinear function is the

modeling of a function with binary outputs. That is, the correct outputs of the

function can only be ones or zeros. Some such functions (for example, binary logic

functions like AND, OR and exclusive-or XOR) have binary inputs as well.

For binary output problems, one type of regression function popularized in the

1960's by Rosenblatt [28] was a \perceptron" model. This is the function

ŷ = fperceptron(x) =
1

2

�
1 + sgn(Wx+ b)

�
; (2.19)

where the sgn function is the component-wise application of the signum threshold

function:

sgn(z) =

8<
:�1 if z < 0

1 if z � 0:
(2.20)

This threshold function forces the output to be binary.1 For each output component,

the perceptron de�nes a hyperplane in the space of the input vector (whose placement

is determined by the parameter values) which is the boundary between the input

values which will produce a zero-output, and those which will produce a one-output.

1If output values of �1 and 1 are desired (rather than 0 and 1), the signum function can be used
directly without scaling, as is done for the ADALINE model.[32]
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The perceptron is trained in the following way: the a�ne function Wx + b is

trained to minimize the MSE between its own output and the desired binary function

(scaled so that zeroes become �1),

k(2y � 1)�Wx+ bk2 (2.21)

using LMS or possibly Wiener-Hopf; then the trained parameters from the a�ne

model are used in the perceptron function, Equation 2.19. Note that the training is

performed on a di�erent function than will actually be used, therefore this training

procedure does not �nd the optimal set of parameters. Despite suboptimal training,

the perceptron is capable of modeling some problems well.

2.3.2 Multi-Layer Perceptrons and Backpropagation

However, there is an entire class of problems for which it can be shown that the

perceptron is simply incapable of a correct model, or sometimes, even an acceptable

model. Such problems are so-called \non-linearly-separable" (NLS) problems. One

of the simplest examples of an NLS problem is the 2-input XOR function. A single

linear boundary (the input has 2 components; a hyperplane in 2 dimensions is a line)

is incapable of dividing the input space into inputs which should produce a zero-

output, and those which should produce a one-output. Since perceptrons are only

capable of a single hyperplane boundary, this problem cannot be modeled correctly

by a perceptron.

In order to solve NLS binary problems, it is necessary to consider the \feedforward2

multi-layer perceptron" (MLP) which is described by the function:

ŷ = fperceptron;L(fperceptron;L�1(� � � fperceptron;2(fperceptron;1(x)) � � � )); (2.22)

where L is known as the number of layers.3 However, a training procedure for this

type of function is unknown. One idea that was considered for training the MLP was

2The name \feedforward" distinguishes these networks (in which the output of a layer may only
feed forward into the next layer) from networks in which the output of one layer may feed back into
the inputs of any arbitrary layer. Such networks are often more complex dynamic systems, and are
not considered in this dissertation.

3For historical reasons, the input is sometimes also counted as a layer, in which case the number
of layers is considered to be L + 1.
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to train using the function

ŷ =
1

2

�
1 + sgn(bL +WL(bL�1 +WL�1(� � �b2 +W2(b1 +W1(x)) � � � )))

�
(2.23)

which only has one layer of thresholding. However, this function simply collapses to

the usual type of perceptron

ŷ =
1

2

�
1 + sgn(ball +Wall(x))

�
(2.24)

and is therefore again unable to solve NLS problems. This inability to solve NLS

problems was claimed by Minsky and Papert [24] in 1969 to be a fatal aw justifying

the abandonment of further research in perceptrons. It took almost 20 years before

Rumelhart et al. [29] popularized a way to overcome this problem and make useful

general regression functions from MLPs.4 5

The key to overcoming the trainability hurdle for MLPs is the use of a continuous

thresholding function in place of the hard-threshold function in Equation 2.22, for

example, the sigmoid function

sgm(z) =
1

1 + e�z
: (2.25)

Then, assuming that the error is a continuous and di�erentiable function of the regres-

sion function's output, 6 the gradient of the error with respect to all the parameters

can be calculated for given parameter values. This allows the use of a gradient descent

minimization method to train the parameters.

When L = 2, the top layer is often called the output layer and the lower layer is

called the hidden layer. As noted above this may also be referred to as a three-layer

network (if one likes to count the input as a layer). It is a surprising but powerful

result (shown by Cybenko [5] and others) that these MLPs in fact need only L = 2

in order to �t any function with desired accuracy, given enough components in the

hidden layer. However it is not known in general how much is \enough," therefore

4Although Rumelhart et al. are known for independently discovering and popularizing the ideas
in the late 1980's, credit for �rst publication of these concepts in 1974 goes to Werbos[31].

5For an discussion of the interesting history of neural networks research see [14] or [33].
6This is true for many commonly used error functions, for example MSE.
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often only experimentation can determine the correct size. A general expression for

an MLP with L = 2 is

ŷ = fu
�
bu +Wufl(bl +Wlx)

�
(2.26)

where fu and fl are the nonlinear vector functions of the upper and lower layers,

respectively (such as component-wise application of the sigmoid or hyperbolic tangent

functions), and Wu, Wl, bu, and bl are the parameters which will be trained.

Returning to a training procedure, in order to use gradient descent, a method for

computing the gradient must be found. The key to backpropagation is the use of

the chain rule of calculus to determine the error gradient at the lower layer in the

network. For a single training pattern fx;yg, the gradient at the network's output is
computed from the error function

@"

@ŷ
=

@"(y; ŷ)

@ŷ
: (2.27)

Then the gradient at the input of the upper nonlinear function, which is also the

gradient at the vector bu, is found as

@"

@bu

=
@ŷ

@bu

@"

@ŷ
=

@fu

@bu

@"

@ŷ
; (2.28)

where @fu
@bu

comes from di�erentiation of that function. For the sigmoid, a shortcut

for computing the derivative of this function is

@sgm(z)

@z
=

e�z

(1 + e�z)2
= sgm(z)(1� sgm(z)); (2.29)

which is useful because sgm(z) has already been computed. (Similar shortcuts ex-

ist for hyperbolic tangent and other nonlinear functions commonly used in neural
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networks.) The continued application of the chain rule yields

@"

@Wu

= (fl(bl +Wlx))

�
@"

@bu

�T

; (2.30)

@"

@fl()
=WT

u

@"

@bu

; (2.31)

@"

@bl

=
@fl()

@bl

@"

@fl()
; (2.32)

@"

@Wl

= x

�
@"

@bl

�T

; and (2.33)

@"

@x
=WT

l

@"

@bl

; (2.34)

which gives the gradient over all parameters as well as the gradient at the input.

Since there are usually multiple vectors x in the training set, the expected value of

the gradient over the entire set is used for gradient descent. This is simply found as an

average (weighted by any prior probabilities over the set) of the gradients computed

for each individual fx;yg. The use of the chain rule to propagate the error derivative
\back" (toward the inputs) through the function is known as \backpropagation", a

name given by Rumelhart et al.

Backpropagation, like LMS, is sensitive to a good choice of learning rate. As

mentioned previously, gradient descent can eventually �nd a local minimum of error.

However a global minimum7 is most desirable. As the number of parameters increases

the likelihood of settling in a non-global minimumbecomes increasingly smaller; non-

global minima are usually only a concern for very small numbers of parameters. Of

course this is all dependent on the speci�c error function. One technique that can

improve the chances of avoiding non-global minima is adding a controlled amount of

noise to the gradient during training.[15]

Perceptrons and multilayer perceptrons are members of a greater class of systems

historically known as \neural networks" because they were originally inspired by

biophysical theories about how networks of neurons interact in the brain. This thesis

is not concerned with the biological implications of such systems, only their use as

7Multiple global minima are possible, therefore there might not be such a thing as \the" global
minimum.
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regression functions.

2.3.3 Probabilistic Interpretation

Consider again problems for which one wishes to model a binary function using a MLP

with the usual sigmoid output function. There seems to be an inconsistency between

the continuous output required for backpropagation training and the discrete output

required by the desired function. One common method is to �rst train the MLP to

minimize the squared error between its output and the desired binary output, then

once trained, replace the continuous sigmoid output function with a hard threshold

function 1

2
(1 + sgn()). Just as in the usual single-layer perceptron case, however, this

is suboptimal training since the training is done for a di�erent function than will

actually be used.

A probabilistic interpretation suggested by Rumelhart[3] is able to resolve the in-

consistency between continuous MLP output and binary desired output. The sigmoid

output ŷ is taken to mean the probability that a corresponding binary output b is

one-valued (and not zero-valued). The use of a continuous sigmoid output function

is therefore consistent with this probability, which may be any value in the range 0

to 1. The error to be minimized may be derived by considering the likelihood P that

the output b (whose probability of being one-valued is ŷ, the MLP output) is correct,

given that the desired value of b is y,

P =

8<
:ŷ if y = 1;

1� ŷ if y = 0:
(2.35)

This likelihood should be maximized. Because of the restrictions on the values of ŷ

and y, one possible re-expression of P is

P = 1� jy � ŷj: (2.36)

Since P < 1, the quantity

~P = (1 � P )2 (2.37)

= (y � ŷ)2 (2.38)
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is a monotonically decreasing function of P , therefore minimizing ~P is exactly equiv-

alent to maximizing P . So it can be seen that minimizing the usual squared error

measure also maximizes the likelihood that the probabilistically interpreted output is

correct.

In general one might wish to model a function which can only have one of N

possible output values. The above binary case is the speci�c case of such a problem

for N = 2. For larger values of N , one can devise an MLP with a set of N outputs

ŷi, each corresponding to the probability that each discrete output value i should be

the one chosen. This requires the constraints

0 � ŷi � 1 8i; and (2.39)

NX
i=1

ŷi = 1: (2.40)

To accomplish this, Rumelhart suggests the use of the \normalized exponential" non-

linear function8 for the output layer,

ŷ = fnormexp(z) (2.41)

=
1PN

i=1 exp(zi)

0
BBBBB@
exp(z1)

exp(z2)
...

exp(zN)

1
CCCCCA : (2.42)

As before, the error to be minimized may be derived by considering the likelihood P

that the chosen output i (whose probability of being chosen is ŷi, the corresponding

MLP output) is correct, given that the correct output value choice is j,

P = ŷj: (2.43)

This likelihood should be maximized. One possible way to re-express P is

P =

NY
i=1

ŷ
yi
i ; where yi =

8<
:1 if i = j;

0 if i 6= j:
(2.44)

8This is reminiscent of the \tilted distribution" seen in source coding theory. [12]
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Note that for a given correct choice j, the term

NX
i=1

yi log(yi)

is constant. Then, since

~P = � log(P ) +

NX
i=1

yi log(yi) (2.45)

=

NX
i=1

yi log(
yi

ŷi
) (2.46)

is a monotonically decreasing function of P , minimizing ~P is exactly equivalent to

maximizing the likelihood P . This form of ~P is known in information theory[4] as

the Kullback-Leibler distance, the relative entropy, and the cross-entropy.

2.4 Regression with State Memory

Sometimes the inputs and desired outputs of a regression function are actually drawn

from sequences xt and yt. Of course the sequential nature of the data could be ignored

and each yt could be separately �t. However, if there is some correlation between

successive values in the sequence, then in theory performance can be improved by

keeping information about the past values of the sequence in some internal state

memory.

One way to do this is to use two regression functions

ŷt = fy(xt; st); and (2.47)

st+1 = fs(xt; st); (2.48)

where st is the internal state memory. Ideally both regression functions can be jointly

optimized for best performance in estimating the ŷt sequence. As long as the fy()

could be trained to \ignore" the state (for example, setting to 0 a matrix parameter

which multiplies the state vector), then allowing the use of state memory can never

force the regression performance to worsen.
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For at least one point in the sequence the state must be initialized to a \reset" value

sinit, which could be chosen arbitrarily, or could be included in the list of parameters

to train. The state st might be a vector, scalar, or even a discrete quantity taking

on only one of N possible values. Is is important to note, however, that this state is

always an internal \hidden" quantity and therefore it is not necessary to impose an

interpretation on it; rather it can be thought of as an opportunity for the regression

system to use memory however it wishes in order to optimize performance.

The functions fy() and fs() could be chosen to be MLPs, in which case the state

is usually a continuous vector. In practice, the two functions may share a common

hidden layer term. The weights of fy() and fs(), as well as the value of sinit (if

desired) can be jointly trained using gradient descent. This involves starting with the

error gradient at the fy() outputs and propagating the computation of error gradient

recursively back in t toward all the inputs. This method is known in the neural

network �eld as backpropagation-through-time (BPTT)[3, 15].



Chapter 3

Data Compression and Vector

Quantization

Every day we absorb information with our senses: still and moving images, speech,

and sound. This information is inherently analog. Yet our modern media for commu-

nications and storage of information | for example, the Internet or computer hard

disks | are digital. Therefore, in order to store or send such information using these

media, the information must be converted into a digital representation (encoded)

and converted back to a reconstruction which resembles the original information (de-

coded).

Data compression is the process of doing this in the most e�cient way possible.

Speci�cally, there are three simultaneous goals for data compression:

� Minimize the number of bits (or symbols) needed for the digital representation.

� Maximize the quality of the decoder's reconstruction of the data; or, stated

di�erently, minimize the distortion incurred by the encoding and decoding pro-

cess.

� Minimize the computational complexity required to perform the encoding and

decoding.

21
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The exact application of the data compression will determine the relative importance

of these three factors.

The number of symbols, or bits (if the number of symbols is a power of 2), is

generally known as the rate. For example, a system to encode sound might be said

to have a rate of 8000 bits per second, or a system to encode a still image might have

a rate of 0:5 bits per pixel (picture element). When storing data on a limited-size

medium such as a hard disk, a lower rate allows more information to be kept on

the disk. When transmitting the information, digital links of �nite bit rate such as

modems take less time to transmit information which has been compressed to a lower

rate. If digital transmission over a radio channel is desired, then compressing the

information to a lower rate allows less bandwidth of the radio spectrum (which is a

�nite resource) to be used, or less complex modulation and demodulation schemes

to be used. For digital transmission channels of a �nite bit rate, telephony applica-

tions (real-time communication of speech or video) might require that the data be

compressed to a rate below a certain minimum threshold.

A data compression systemmust also provide a faithful reproduction of the original

data from the decoder. Maximizing the quality is equivalent to minimizing a distortion

measure between the original data and its reproduction. The correct type of distortion

measure is dependent on the type of data and how the decoded data is to be used.

This is discussed in more detail in Section 3.4.

In fact there is a direct relationship between rate and distortion. In information

theory, Shannon's theory of rate-distortion bounds shows that the limit of attainable

average distortion is a decreasing function of rate.[4, 9] In other words, even the best

possible coding system for a given information source can only decrease distortion by

increasing rate, or conversely, decrease rate by increasing distortion. This fundamen-

tal result suggests that even practical data compression must trade o� one for the

other.

In a practical system, computational complexity of the encoding and decoding

algorithms is a concern. Complexity is hard to measure exactly because it depends

so much on the implementation of the algorithm in hardware or software, but gross
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di�erences in complexity between two algorithms are convincing regardless of imple-

mentation. In general computation is a tradeo� between the following factors:

Time A given processor can only execute an algorithm in a given amount of time.

It may be possible to spend more money to buy or build a faster processor, or

more electrical power may be consumed in order to run the processor at a faster

clock speed (to a limit), thereby speeding the algorithm's run time. Real-time

applications require that the algorithm be run within a certain time constraint

and are inexible in this respect.

Money As mentioned above, money can buy a faster processor. Sometimes buying

more memory allows an algorithm to be run faster. To increase the electrical

power, higher-capacity batteries or more batteries (for a portable device) or

cooling systems to remove waste heat and allow faster clock speeds could be

purchased.

Power Electrical power is especially a concern for portable battery-operated devices

which have limited energy on which to operate. A processor which uses more

power may require a cooling system to allow proper error-free operation as well

as to avoid heat-damaging the system.

Therefore reducing the algorithmic complexity allows some combination of these fac-

tors to be improved.

The tradeo� between the three major factors | rate, distortion, and complexity

| and their relative importance, so di�erent for di�erent applications, is what allows

so many data compression methods to be useful. One method would be considered

superior to another only if it were better in some of the three factors and not signi�-

cantly worse on the others. Therefore the application should determine the choice of

method by weighing these factors.

A fourth factor which is sometimes important for data compression is the latency

or delay. For example, if a speech-coding system must acquire an entire segment of

one second length before any encoding can be performed on that segment, then there

is at least a one second delay (plus the computation time and transmission time) from
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Encoder Decoderx x̂
index i

Figure 3.1: Vector Quantization

the acquisition of the speech by the encoder until the decoder can begin to decode

that segment. In a real-time application such as a telephone call using this speech

coding, long delay times may be annoying to people attempting to converse, and can

also create echo problems which must be corrected by additional equipment.[11]

3.1 Lloyd-Optimal Vector Quantization

Suppose that the data to be compressed is represented by a vector x. The encoder will

produce an index i which is an integer from 1 to N , whereN is the number of symbols;

put another way, log2N is the rate in bits per vector. Let x̂ be the reconstruction

of x which the decoder produces from the index i. This general system, depicted

in Figure 3.1, is known as vector quantization or VQ. Implicit in the system is the

measure of distortion (or error) between x and x̂ which is calculated using a given

function d(x; x̂).

Classical memoryless VQ, also referred to as \plain VQ" or \vanilla VQ," is based

on the use of a codebook. This codebook is simply a table of N possible values for x̂.

For each value of i, the decoder operates by looking up the corresponding value in

the codebook x̂i, and presenting that value as the output x̂.

The two Lloyd optimality conditions suggest how to use the codebook to encode,

and also suggest one way to train the codebook. As pointed out by Lloyd,[21] these

two conditions are necessary for an optimal quantizer:

� The encoder is optimal, given the decoder.
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� The decoder is optimal, given the encoder.

When the decoder is a codebook, these simple conditions manifest themselves as,

respectively, the nearest neighbor condition and the centroid condition.

For a given decoder, the encoder is optimal if the index i chosen will be the one

that minimizes the distortion d(x; x̂) between the original vector x and the decoder's

reconstruction x̂i. That is, each time a vector x is to be encoded, for each possible

index i, the distortion d(x; x̂i) should be computed, then the i which minimizes that

distortion should be chosen. Letting the encoder be represented by the function

i = Q(x); (3.1)

a formal statement of this condition is:

Q(x) = argmin
j

d(x; x̂j): (3.2)

Since this means choosing to decode to the x̂i which is the nearest neighbor (in the

minimum distortion sense) to x, this is known as the nearest neighbor condition.

For a given encoder, the decoder is optimal if each possible reconstruction x̂i is

optimal given the statistics of the values of x such that the encoder chooses to encode

to that index i. In other words, for each i, x̂i minimizes the expected distortion given

the encoder:

x̂i = argmin
y

E[d(x;y)jQ(x) = i]: (3.3)

Because this optimal value of x̂i is the \centroid" (in the minimum distortion sense)

of the region in x which encodes to i, this is known as the centroid condition.

These two conditions suggest one way to train the codebook. First, there must be

an initial codebook (for example, one which is generated randomly). A training set of

x values is encoded using that codebook and the nearest neighbor condition. Then,

using that encoding for the training set, a new set of centroids is calculated and this

becomes the new codebook. These two steps are repeated until the codebook reaches

a �xed point, which is a local optimum of this training procedure. Recall that this

optimum is not necessarily globally optimum because the Lloyd optimality conditions
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are necessary, but not su�cient, for quantizer optimality. This training procedure is

known as the Linde-Buzo-Gray algorithm.[20]

More complicated training procedures can be applied to try to avoid local optimum

\traps," for example the deterministic annealing method of Ken Rose[27]. Regardless

of training method, once trained the codebook can be used by a nearest-neighbor

encoder.

3.2 Constrained Vector Quantization

Since the best of all the locally Lloyd-optimal solutions is the global optimum, this

is the \ultimate solution" in the sense of minimizing the distortion at a given rate.

However, this ignores computational complexity completely. It is only because of

complexity that other methods are worth considering at all.

If x is of dimensionality k (has k scalar components), let the complexity to compute

the distortion between x and x̂i be C(k), a function of k. Then the total complexity to

encode using the optimal \full-search" algorithm (searching for the nearest neighbor

over the full codebook) is NC(k). Note that for many distortion measures (such

as MSE), C(k) is proportional to k, C(k) = Ak, in which cases the complexity is

therefore NAk.

One direct way to reduce the complexity is to break up x into l equally sized

subvectors, then perform full-search VQ on each subvector (perhaps using only one

codebook, or perhaps using l di�erent codebooks). In order to keep the rate the same

as before, each subvector is encoded to one of N1=l indices, therefore the complexity

for encoding each subvector is N1=lC(k
l
). The total complexity to encode all the sub-

vectors is then lN1=lC(k
l
), which is N1=lAk for many distortion measures. Therefore

the complexity scales exponentially with vector size. This reduction in complexity is

traded o� with distortion.

Non-full-search methods can also be used to reduce complexity. A particular

interesting class of such methods is table-lookup VQ, in which the scalar components
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of x are each uniformly quantized (say, to 8 bits) then a table indexed by that lower-

precision representation of x contains values of indices. One especially convenient

property of table-lookup VQ is that there is no computation of the distortion measure

during encoding, which is advantageous for those distortion measures which would

require much computation.

3.3 Finite-State Vector Quantization

Many sources to be quantized have memory, that is, there is correlation between dif-

ferent samples. Unlike memoryless VQ, a system which can use internal state memory

about the past can take advantage of that correlation to improve performance. In

such a case the vectors being coded are in a sequence.

Figure 3.2 shows a general structure for such a system, which is known as a

recursive coding system or coding with state-feedback since the next state st+1 will

be fed back into the system at the next step in the sequence. In this example the

vectors to be coded are a sequence xt in one dimension t. In many cases of interest,

t represents time.

Implicit in Figure 3.2 is that there are actually two identical \Next State Function"

boxes; one is with the encoder, and one is with the decoder. Assuming that the states

on both sides are initialized (both sides reset to a special agreed-upon initial state)

or synchronized (the decoder's state is set to the state description as transmitted by

the encoder) at some point, and assuming that there are no errors in transmitting

the index it, both copies will run in perfect synchrony.1 Unless there is no correlation

whatsoever between successive vectors in the sequence, the state memory is expected

to be able to hold information helpful to the encoding and decoding process. Since the

state is known by encoder and decoder it need not be encoded for normal operation,

therefore there is a savings in rate due to not sending bits for this state.

Finite-state vector quantization (FSVQ) is a recursive extension to memoryless

Lloyd-optimal VQ. In FSVQ the state is a discrete index from 1 to Ns which selects

1In practice, errors in transmitting it necessitate periodic, although hopefully very infrequent,
reinitialization or resynchronization of the state.
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Figure 3.2: VQ with State Feedback

one codebook from a set of Ns codebooks. That codebook is then used by the encoder

and decoder in the usual Lloyd-optimal way. FSVQ is also known as \switched VQ"

because the value of state switches between the di�erent codebooks.

Unfortunately, a rule for an optimal next-state function is unknown. Di�erent

types of next-state functions2 have been tried[8, 6] and various ad hoc methods have

been used to train the next-state function and the codebooks. However there are two

prevailing problems with FSVQ.

The �rst problem with FSVQ is that even the best training methods lead to a

design that greedily chooses a next state which may optimize the distortion at the

next point in the sequence, but turns out to be a bad decision for the long-term

distortion. In order to optimize the total future error, the best next state is usually

not the one which minimizes the immediate short-term distortion.

A more fundamental problem is the premise of FSVQ, the restriction to �nite

2It is interesting in the context of this thesis that Dunham's improved next-state function in [6]
is a stochastic method.
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states. Since normally the state will not be transmitted, there is no need to constrain

it to a �nite number of discrete states, which merely limits the amount of information

the state can hold. However in the �nite-state system, each state has an independent

codebook. Therefore as the number of states increases, the number of independent

parameters also increases, inevitably leading to over�tting of the data used to train

those codebooks. This inherent limit to performance can only be overcome by con-

sidering a di�erent way to represent and use the state information.

3.4 Quality Measures for Source Coding

One of the objectives of data compression is to maximize the quality of the repro-

duction, or stated conversely, to minimize the distortion d(x; x̂) between the original

data x and the reproduction x̂. The choice of function d(x; x̂) is an important issue.

Ideally the distortion measure is speci�cally suited to the type of data and the way in

which it is to be used. For example, if the data is a still image which is to be viewed

by a person, then the best distortion measures will be those for which a decrease in

distortion always corresponds to an improvement in the subjective \quality" of the

image as judged by that viewer. The criteria used by the viewer is di�erent for an

image like a blackboard (comprehension of handwritten words and drawings) than for

a identi�cation photo (matching the photo with a person's face) or for a reproduction

of a �ne art (one might wish to see even minute details like brush strokes). Likewise

the criteria for telephonic speech (intelligibility of the words) is di�erent than for an

audiophile recording of a symphony orchestra (high quality reproduction of all the

sounds). Therefore good distortion measures will be good mathematical models of

human perception for a speci�c task, a topic studied in the �eld of psychophysics (or

psychoacoustics for sound). The more perceptually accurate a distortion measure,

the better one could expect a coding system (whose objective is to minimize that

distortion measure) to work. The ultimate test of quality is subjective rating by

humans.

A more accurate distortion measure might be rejected in favor of a less accurate
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one in order to reduce complexity or simplify analysis. It is for these reasons that

mean squared error (MSE) is often used as a default distortion measure.

A simple example can show how perceptually unsuitable MSE is for images. An

original image is modi�ed by translating all the pixels to the right or down by a small

distance, such as a shift of one or two pixels. The modi�ed image appears to have a

signi�cant MSE when compared to the original, yet perceptually it is identical except

at the very edges.

A similar example for sound waveforms again shows the unsuitability of MSE.

If an original waveform is delayed by one or two samples, the MSE between origi-

nal and modi�ed waveforms is signi�cant yet they are perceptually indistinguishable.

Furthermore, if the original sound is modi�ed simply by inverting its waveform, per-

ceptually it is identical to the original despite a signi�cant di�erence as measured by

MSE.

For sound, perceptual experiments show that the e�ect of distortion at di�erent

frequencies is dependent on the original sound (so-called masking e�ects). Also,

phase does not seem to be always important in perception, as the waveform-inversion

example above shows.

3.5 Dithered Quantization

Perceptual experiments show that the least bothersome kind of distortion is the ad-

dition of random noise to the original data, that is, noise which is both white and

uncorrelated to the original data. For example in scalar quantization of sound wave-

forms at a low rate, the error from a plain VQ system might be heard as degrading

\fuzz" distortion, while the error from a quantization system with dithering might

be perceived as a \clean" signal and white noise heard together.[16] As this is a per-

ceptual e�ect, ideally the distortion measure could model this e�ect by rewarding

noise which is less correlated. In the absence of such a distortion measure, a good

objective is to force the noise to be white and uncorrelated with the original data,

while increasing the nominal distortion as little as possible.
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For scalar quantization with uniform reproduction values, (that is, reproduction

values equally spaced by �) the technique of dithering may be used to force the

desirable properties on the quantization noise. There are two basic types of dithering

for uniform scalar quantization.

Subtractive dither is the addition of a \dither" signal before quantization, then the

subtraction of that same signal after quantization. This can be accomplished

by using a pseudo-random number generator to synchronize the dither signal

at both ends of the quantization. If the dither signal meets certain conditions,

then the noise will have the desired properties. An example of such a dither

signal is independent identically distributed noise with a uniform distribution

over (��=2;�=2]

Non-subtractive dither is the addition of a dither signal before quantization, with-

out the later subtraction of the signal. This avoids the complexity of syn-

chronized, statistically well-behaved pseudo-random number generators. If the

dither signal meets certain conditions which are more restrictive than in the

subtractive case, then the noise will be white and a certain number of its con-

ditional moments will not depend on the original signal.[13] An example of a

dither signal for the noise power (the second moment) to be independent is in-

dependent identically distributed noise with a triangular distribution (obtained

by adding two independent uniform dither signals, as described above).

3.6 Previous Research on Vector Quantization Us-

ing Neural Networks

Of previous research approaching vector quantization with ideas from the neural net-

work �eld, three methods in particular are of interest in the context of this thesis.

These are Teuvo Kohonen's learning vector quantization, Brian Flachs' sparse adap-

tive memory, and the codebook-excited neural networks work of Wu and Fallside.



Chapter 3: Data Compression and Vector Quantization 32

3.6.1 Learning Vector Quantization

From a VQ perspective, the learning vector quantization (LVQ) work of Kohonen3 [17]

may be seen as an alternate training procedure for ordinary codebook VQ. Originally

LVQ was motivated by biological models of neural activity in the brain, hence its

association with \neural networks." However it does not bear much resemblance to

the feedforward multi-layer neural network models used in this thesis.

The codebook vectors are associated in a one-dimensional \chain," a two-

dimensional \mesh," a three-dimensional \sca�old," or so on. For example, in the

one-dimensional case, each index i is considered to have two immediate \neighbors"

at indices i � 1 and i + 1, except for the indices at the ends which have only one

neighbor. In the two-dimensional case, code vectors are indexed by two indices (i; j)

and are considered to have four immediate neighbors at (i� 1; j), (i; j� 1), (i+1; j),

and (i; j + 1), except for code vectors at the edges of the mesh (i = 1 or Ni, or j = 1

or Nj).

The concept of neighbors is used during training. For each training iteration, a

training vector is presented (for example, by being drawn randomly from a training

set), then its nearest neighbor code vector is found. This code vector is moved closer

to the training vector by some update rule. Then its immediate neighbors on the mesh

(or chain, etc.) are also moved closer to the training vector, although by a smaller

amount than the nearest neighbor. As a result of this heuristic training procedure,

the mesh generally will converge to an \unfolded" state in which it attempts to cover

the space of probable x.

However, from a VQ standpoint, this is merely a suboptimal heuristic training

procedure. This training procedure does not promise to lead to the Lloyd-optimal

solution, or even one that is nearly Lloyd-optimal, since the optimality conditions are

not even taken into account by LVQ. When LVQ is able to �nd a better codebook

than the simple Linde-Buzo-Gray algorithm it is usually a result of local minimum

\traps," which more clever algorithms which do seek Lloyd optimality can overcome

3This method is alternately referred to in the literature as the self-organizing feature map
(SOFM).
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(for example, [27]). However, LVQ could be used for initial training (to get past local

minima), then the result of LVQ training could be used as the starting codebook for

training to optimality by the Linde-Buzo-Gray algorithm.

Wu and Fallside[35] have considered a training rule like Kohonen training without

the concept of neighbors, which they call connectionist VQ. During training, a pa-

rameter determines how far to move the nearest neighbor toward the training vector,

as in usual LVQ. For connectionist VQ, Wu and Fallside determined the value of

this parameter which maximizes the immediate decrease in distortion for the current

training iteration; their claim for this greedy scheme was that the distortion is the

same as that obtained by training with the Linde-Buzo-Gray algorithm.

3.6.2 Sparse Adaptive Memory

The sparse adaptive memory (SAM) work of Brian Flachs [7] is an endeavor to apply

MLP-type feedforward neural network ideas to vector quantization. The trainable

parameters in SAM are a set of N \prototype" vectors pi and a \codebook" matrix

C consisting of N code vectors as its columns; however this \codebook" will not be

used in the usual Lloyd VQ way. The basic SAM algorithm begins by �nding the

distortion d(x;pi) between input x and each of the prototype vectors pi. Then the

minimum distortion

dmin = min
i
d(x;pi) (3.4)

is found, from which the N \activations" ai may be computed as

ai =

8>>><
>>>:
1 if d(x;pi) = dmin;

1 � 1
T
[d(x;pi)� dmin] if dmin < d(x;pi) < dmin + T

0 if d(x;pi) � dmin + T:

(3.5)

The critical parameter T , a positive number, is known as the transition width. Once

the activations are computed, the reconstruction of x is found using the activations

and the codebook as a thresholded linear product

x̂ = thr(Ca); (3.6)
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where the thr() is the component-wise application of some continuous and di�er-

entiable threshold function such as the sigmoid or hyperbolic tangent, and a is the

collection of all ai into a vector. The primary innovation of SAM is that since the

entire system is a continuous and di�erentiable function, the distortion can be mini-

mized by gradient descent, and Flachs even calls such training backpropagation.

Inspection of Equation 3.5 reveals that there will always be at least one i for which

ai = 1. As long as SAM never encounters a value of x for which more than one ai

value is nonzero | a condition which could be guaranteed4 by setting the transition

width T to zero | then SAM can be used as an encoder and decoder, where the

index is the one value of i for which ai = 1 (all other ai = 0). In fact plain VQ is a

special case of SAM for T = 0, pi = Ci for all i, and thr(z) = z.

However, in order for any useful training to take place, some vectors x must cause

values of ai to fall between 0 and 1. This is because the function of Equation 3.5

only has a non-zero derivative for the intermediate region (the second case), which

only occurs for a non-zero value of T . Only with non-zero derivatives of Equation 3.5

can a non-zero gradient be propagated back to the prototype vectors to change them.

That is to say, prototype training is only due to vectors which fall in the \transition

region." Clearly then T must be non-zero for useful training to occur.

Unfortunately, the requirement for training that T > 0 conicts with the re-

quirement for coding that T = 0. Only through an arbitrary heuristic may this

fundamental inconsistency be resolved. For instance, T might be started at a non-

zero value for training, then over the course of training be lowered gradually to zero

using a heuristic annealing schedule. No theoretical justi�cations for such heuristics

are known.

Another unanswered question in SAM is what the output threshold function thr()

should be. Again there is a conict between the desire to use \no" threshold function

thr(z) = z, to allow SAM to act as an ordinary codebook VQ system, and the desire

to choose a nonlinear threshold function such as a sigmoid, to allow more powerful

4This is assuming no pathological cases of x lying exactly on boundaries of nearest-neighbor
regions, that is, assuming d(x;pi) = dmin for only one value of i. If x is generated by a continuous
probability distribution, then this will hold true because the boundaries occupy no volume of x.
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functional modeling.

Although not explored in Flachs' thesis, SAM could be extended to use state-

feedback with little di�culty.

3.6.3 Codebook-Excited Neural Networks

Wu and Fallside[36] proposed a method like code-excited linear prediction (CELP)

using a neural network in place of the linear prediction �lter. In ordinary CELP, an

excitation signal is passed through a linear prediction �lter (whose parameters are

somehow coded) in order to obtain the �nal output, which is then used to determine

the distortion. A codebook of possible excitations is searched for the one which

minimizes the distortion of the �lter output. In Wu and Fallside's work, known

as codebook-excited neural networks (CENN), the linear �lter is simply replaced by

a nonlinear �lter implemented as a neural network. Without the constraint that

the �lter be linear, distortion can potentially be improved. However, complexity

(a major problems of practical CELP implementations) is only worsened. This is

because CELP may take advantage of the linearity of the �lter to use shortcuts when

computing the distortion for a given excitation in the codebook; these shortcuts are

no longer possible with a nonlinear �lter. Therefore distortion must be computed by

a complete �ltering operation for each excitation in the codebook.
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Stochastic Vector Quantization

4.1 Stochastic Vector Quantization Algorithm

The system introduced in this chapter performs the same task as plain memoryless

VQ, that is, it generates a representation of a continuous-valued vector using a discrete

index. As in plain VQ, once an index is generated by the encoder, the decoder simply

outputs the vector found at the indexed location in the codebook table. However the

encoder uses an entirely di�erent method to generate that index.

Speci�cally, as illustrated in Figure 4.1, the encoder computes a probability dis-

tribution p over indices 1 through N using the formula

p = fcl(x)

= fnormexp

�
bu +Wuftanh(bl +Wlx)

�
; where

(4.1)

x

p1

p2

pN

...

Choose

Randomly
index iIndex

p =

fcl(x)

Figure 4.1: Encoder for Stochastic VQ System
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fnormexp(y) =
1PN

i=1
exp(yi)

0
BBBBB@
exp(y1)

exp(y2)
...

exp(yN )

1
CCCCCA (4.2)

and where ftanh(z) is the hyperbolic tangent function tanh() applied component-wise

to each element of z. As mentioned in Section 2.3.3, the function fcl(x) is of the type

used for multinomial classi�cation problems in the neural network �eld[3]. The pa-

rameters bu, bl,Wu, and Wl are the trainable weights of the system. The subscripts

\u" and \l" refer to the upper layer and lower layer. Note that if the weights and

x are �nite, since the tanh() function's range is �nite, it can be shown that all the

elements of p are limited to the range (0; 1). In addition, the elements of p sum to

1. These properties allow p to be interpreted as a probability distribution.

The distribution p is used by a random index generator to choose an index i, that

is,

Pr[Q(x) = ijx] = pi = fcl;i(x) (4.3)

Then x̂, the quantized representation of x, is generated by looking up the ith vector

x̂i in the codebook

C =
�
x̂1 x̂2 : : : x̂N

�
: (4.4)

Since the behavior of the entire system is stochastic (unlike plain VQ), the reproduc-

tion error for a given vector is an expected value over the random choice of index.

The use of randomness in quantization is of course not a new idea. This stochastic

VQ scheme might be thought of as a kind of \vector dithering." Both traditional

dithering and this method use a random choice of index when encoding.

One of the immediately obvious bene�ts of this method is that no computation of

distortion measures is required during encoding, unlike usual nearest-neighbor VQ.

As in table-lookup VQ, this can contribute to a signi�cant reduction in complexity,

especially when the distortion measure is computationally complex.
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4.2 Decoder Optimality

If a training method can train the entire system to optimality, then since there are

no constraints on the decoder's codebook, the code vectors x̂i of an optimally trained

system will be optimal for the given encoder. In other words, the decoder would

satisfy the centroid condition,

x̂i = argmin
y

E[d(x;y)jQ(x) = i]: (4.5)

However, it is interesting to note that the decoder can be forced to always ful�ll the

centroid condition. Rather than allowing the code vectors x̂i to take on independent

values, the values can be derived from the encoder and from statistics of x so as to

always satisfy, for all i,

x̂i = argmin
y

E[d(x;y)jQ(x) = i] (4.6)

= argmin
y

Z
d(x;y)Pr[Q(x) = ijx]Pr[x] dx (4.7)

= argmin
y

Z
d(x;y)fcl;i(x)Pr[x] dx: (4.8)

If one wishes to satisfy the centroid condition for a set of M training vectors with

respective prior probabilities wm, the code vectors are found as

x̂i = argmin
y

MX
m=1

d(xm;y)fcl;i(xm)wm (4.9)

which is the centroid over a weighted data set, where the weighting is fcl;i(xm)wm.

Another constraint which can be easily enforced is maximizing the entropy of the

encoder, if desired.

4.3 Encoder Suboptimality

The decoder codebook could satisfy the centroid condition for the encoder. However,

it can be shown that this encoder structure can never satisfy the nearest neighbor con-

dition exactly. Lloyd-optimality would require the distribution p to be deterministic1

1This assumes a deterministic distortion function; see Section 3.5.
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for a single index over each Voronoi region of the domain of x. That is, all the ele-

ments of p would be exactly 0, except for a single element which would be exactly 1.

But two facts about fcl(x) clearly conict with this requirement: the elements of p

can approach 0 or 1 but can never exactly equal either value, and the Lloyd-optimal

discontinuous transition in the value of p at the boundaries between Voronoi regions

can only be approximated by the continuous function fcl(x). For example, if the dis-

tortion function is mean squared error, the Voronoi regions are convex polytopes; the

angular junctions of 3 or more polytopes are di�cult to approximate well with an

fcl(x) with a small number of parameters. It is notable however that for the special

case N = 2 there are no such junctions, and the only region boundary is a single

hyperplane which can be asymptotically achieved with a minimal-parameter fcl(x).

An example with N = 3 and x = fx1;x2g serves to illustrate this point. Suppose
that the centroids of the Lloyd-optimal codebook are

C1 = f1; 0g (4.10)

C2 = f�1

2
;

p
3

2
g (4.11)

C3 = f�1

2
;�

p
3

2
g: (4.12)

Then, referring to Equation 4.1, suppose the encoder's neural network has 3 \hidden

units" (that is, there are 3 scalar components of bl) and the weight parameters are:

Wu = SuI (4.13)

bu = 0 (4.14)

Wl = SlC (4.15)

bl = 0 (4.16)

where I is the identity matrix, and C is the Lloyd-optimal codebook as described

above. The parameters Su and Sl control the smoothness of the approximation.

Figure 4.2 shows the neural network's output for i = 2 in detail at the origin,

for Su = 200 and Sl = 1. Lloyd-optimal VQ would divide up the space into three

identical \pie slices" meeting at the origin, which would make an equivalent �gure
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have immediate vertically dropping \walls" at the boundaries. As Figure 4.2 shows,

the neural network, as a continuous function, can only approximate those sheer drops

smoothly, although as Su or Sl increases the approximation becomes better. Fig-

ures 4.3 and 4.4 show a comparison of the Lloyd-optimal value of p2 (the gray line)

and the neural network's value of p2 (the black line) at two parallel slices through

Figure 4.2 which pass very near the junction of the three regions. Figure 4.3 shows

p2 for the slice

x = fx1;x2g = 0:005f1
2
;�

p
3

2
g+ tf

p
3

2
;
1

2
g (4.17)

(for which the Lloyd-optimal value of p2 is 0) and Figure 4.4 shows p2 for the slice

x = fx1;x2g = �0:005f1
2
;�

p
3

2
g+ tf

p
3

2
;
1

2
g: (4.18)

By itself this suboptimal scheme may be useful only because of the reduced com-

plexity during encoding, and even then should be compared against similarly sub-

optimal reduced-complexity methods such as table-lookup VQ. However the state-

feedback extension of this scheme (discussed later in Chapter 5) can outperform

�nite-state VQ (the usual state-feedback extension of Lloyd-optimal VQ) by address-

ing some of the problems with FSVQ.

4.4 Gradient Descent Training

The encoder's weight parameters and the decoder's codebook vectors are system pa-

rameters which need to be trained. For the method of this section, only distortion

measures which are continuous and di�erentiable functions of x̂ are allowed; however

this includes nearly all useful distortion measures. The total distortion to be mini-

mized over a training set of vectors x is then a continuous and di�erentiable function

of all the parameters. This allows the use of an iterative gradient descent algorithm

to seek a set of parameters which minimize distortion.

The gradient over the parameters must be found. First consider the distortion "
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Figure 4.3: One Slice Through the Example Encoder Distribution of Figure 4.2
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for a single training set vector x, which is computed as an expected value

" = E[d(x; x̂)] =

NX
i=1

pid(x; x̂i) (4.19)

where d(x; x̂i) is the given distortion function (for example, MSE). Therefore

@"

@x̂i
= pi

@d(x; x̂i)

@x̂i
; 8i (4.20)

and

@"

@pi
= d(x; x̂i); 8i: (4.21)

Equation 4.20 gives the gradient for the codebook parameters, and Equation 4.21

can be used to �nd the gradient of the encoder's weight parameters. From @"
@pi

the

chain rule of di�erentiation may be used to �nd the gradient of " at the inputs of

the fnormexp() function. This gradient in turn can be used to �nd @"
@bu

, @"
@Wu

, and the

gradient at the outputs of the ftanh() function. Again the chain rule is used to �nd the

gradient at the inputs of the ftanh() function, from which @"
@bl

, @"
@Wl

, and @"
@x

(if desired)

can be found. This method of repeatedly applying the chain rule to propagate the

computation of gradient further back (toward the ultimate input of the function) is

a kind of backpropagation. After backpropagation the gradient over all parameters

is known.

4.5 Stochastic Gradient Descent Training

Note that the computation of the gradient in Section 4.4 required �nding @d(x;x̂i)

@x̂i
and

d(x; x̂i) for all N values of i. Suppose that, for some reason, the computation of these

values is in fact very expensive for each value of i. Just such a situation is encountered

in Section 5.2.

Consider an alternate method for computing not the exact gradient, but an ap-

proximation which equals the gradient in expectation. This will be done by stochastic

sampling of a small number of values of i, reducing the expense of computing for all

values of i.
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To compute this approximation to the gradient, for each trial choose a random

value j of the index using the distribution q1; q2; : : : qN . Then Equation 4.19 can be

expressed as an expected value over many such trials:

" =

NX
j=1

pjd(x; x̂j) =

NX
j=1

qj
pj

qj
d(x; x̂j) = Ej

�
pj

qj
d(x; x̂j)

�
(4.22)

where Ej [ ] denotes the expected value over j. Equations 4.20 and 4.21 can be re-

expressed as

@"

@x̂i
= pi

@d(x; x̂i)

@x̂i
= qi

pi

qi

@d(x; x̂i)

@x̂i
; 8i

= Ej

2
4
8<
:

pj
qj

@d(x;x̂j)

@x̂j
if i = j;

0 if i 6= j

3
5 ; 8i; and

(4.23)

@"

@pi
= d(x; x̂i) = qi

d(x; x̂i)

qi
; 8i

= Ej

2
4
8<
:

d(x;x̂j)

qj
if i = j;

0 if i 6= j

3
5 ; 8i:

(4.24)

Assuming a su�ciently small learning rate, the expected values in Equations 4.22,

4.23, and 4.24 could be estimated by sample averages, over a �nite number of choices

of j, of the bracketed values.

E�ectively, the gradient is being estimated as an unbiased estimate plus some

noise. The gradient descent algorithm can tolerate the addition of a certain amount

of zero-mean noise to the true gradient; in fact it can be helpful in avoiding non-global

minima[15]. Two methods to reduce the amount of noise can be used, separately or

in combination, although both require a trade-o� in the amount of training time:

� A larger number of stochastic samples can be used to make the estimate. The

noise is reduced by \averaging out." The amount of computation time per

iteration is proportional to the number of samples.

� The learning rate constant can be reduced. Both the noise and the magnitude

of the step taken in the true gradient direction will therefore be reduced. Since
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the true gradient step size is reduced, more iterations will be necessary for the

same amount of training progress.

The advantage of this method becomes apparent when a single sample of j is used

to estimate the expected values in Equations 4.23 and 4.24; in this case one needs

to calculate the values
@d(x;x̂j)

@x̂j
and d(x; x̂j) only for that single value of j. This is

desirable if the calculation of those values is very expensive.

4.5.1 Choice of Sampling Distribution for Training

One important question remains regarding the choice of the distribution q. Any

choice of q with qj 6= 0 for all j will allow estimates with �nite error. It would be

desirable to choose q in order minimize the variance of the estimates. Solution of

such a minimization yields the optimal q as a function of all N values of
@d(x;x̂j)

@x̂j

(when optimizing the estimate of @"
@x̂i

), or all N values of d(x; x̂j) (when optimizing

the estimate of @"
@pi

). However, if all these values were known a priori then there would

be no need for this stochastic estimation method in the �rst place. Therefore from a

practical standpoint, obtaining a minimal-variance estimate is not possible.

There are at least two good reasons to choose to match the sampling during

training to the sampling during usage given the current weights, in other words,

choose

q = p: (4.25)

First, there is the intuitive argument that training time should be distributed pro-

portionately to likelihood. It makes little sense to choose a uniform distribution for q

if p is strongly biased toward just a few indices, since training time would be wasted

on the unlikely indices. Second, it is simpler to deal with only one distribution rather

than two, for computational purposes as well as monitoring training. For example,

the expected value of estimated error " for each training iteration will be the true

error ".
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Stochastic Vector Quantization

with State-Feedback

5.1 Stochastic VQWith State Feedback Algorithm

A recurrent extension to the stochastic VQ scheme of Chapter 4 can be trained

to optimality. As the results of Section 6.1 show, this optimally trained recursive

system based on a suboptimal memoryless structure can sometimes outperform a

non-optimally trained recursive system based on an optimal memoryless structure

(FSVQ).

Figure 5.1 shows the structure of the system. The state st is a continuous-valued

vector. The encoder is like the stochastic encoder of Chapter 4 except that fcl() must

be expanded to accommodate the additional input st:

pt = fcl(xt; st)

= fnormexp

�
bu +Wuftanh(bl +Wl,xxt +Wl,enc,sst)

� (5.1)

In order to reduce complexity, the decoder and the next-state function are

combined.1 As in the memoryless case, the index it is used to select the vector

1It would be possible to have two of the dashed-line boxes of Figure 5.1, one with codebook
matrix Cdec feeding into fdec(), and one with codebook matrix Cns feeding into fns(). However,
there is no reason not to combine them in order to allow fdec() and fns() to \share hidden units,"
that is, share the common term of Equation 5.4.

47
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Figure 5.1: Stochastic VQ with State Feedback

Cit from a codebook matrix C. Then x̂t and st+1 are found by

st+1 = fns(Cit ; st)

= ftanh
�
bns +Wnsftanh(bl,dec +Wl,dec,CCit +Wl,dec,sst)

� (5.2)

and

x̂t = fdec(Cit ; st)

= bbias +Wscaleftanh
�
bu,dec+Wu,decftanh(bl,dec +Wl,dec,CCit +Wl,dec,sst)

� (5.3)

whereWscale is a diagonal matrix. The terms bbias and Wscale allow the ranges of the

components of x̂t to be unrestricted. The argument of the common term

ftanh(bl,dec +Wl,dec,CCit +Wl,dec,sst) (5.4)

can be reformulated by de�ning a new codebook C0 such that

C0 = (bl,dec;bl,dec; : : :bl,dec) +Wl,dec,CC; (5.5)

which allows the computation of merely

ftanh(C
0

it
+Wl,dec,sst) (5.6)

further reducing the implementation complexity.
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5.2 Gradient Descent Training

The parameters of the system which need to be trained are:

� bu, Wu, bl, Wl,x, and Wl,enc,s from Equation 5.1,

� bns and Wns from Equation 5.2,

� bbias, Wscale, bu,dec, and Wu,dec from Equation 5.3,

� C0 and Wl,dec,s from Equation 5.6, and

� an initial state vector2 s1.

Let w represent all those system parameters except s1. Assuming a continuous and

di�erentiable distortion function, since the total distortion is a continuous function

of w and s1, a gradient descent algorithm can be used to train w and s1.

Consider a sequence of T vectors fx1;x2; : : :xTg. De�ne the total current and

future distortion at step t given this sequence, given that the current state is st, and

given that the system parameters are w, as "t(st;w); that is

"t(st;w) =

NX
i=1

pit
�
d(xt; x̂t) + "t+1(st+1;w)

�
: (5.7)

The total distortion over the entire sequence, which is the quantity to be minimized,

is

" = "1(s1;w): (5.8)

2The value of s1 may be established arbitrarily (for example 0) but the additional complexity to
train the value to optimality is negligible.
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The gradients @"
@w

and @"
@s1

need to be found. Omitting some arguments for read-

ability, di�erentiation of Equation 5.7 gives

@"t(st;w)

@w
=

NX
i=1

 
@fcl;i(st;xt;w)

@w

�
d(xt; x̂t) + "t+1(st+1;w)

�

+ pit

�
@fdec(st; i;w)

@w

@d(xt; fdec())

@fdec

+
@fns(st; i;w)

@w

@"t+1(st+1;w)

@st+1

+
@"t+1(st+1;w)

@w

�!
(5.9)

and

@"t(st;w)

@st
=

NX
i=1

 
@fcl;i(st;xt;w)

@st

�
d(xt; x̂t) + "t+1(st+1;w)

�

+ pit

�
@fdec(st; i;w)

@st

@d(xt; fdec())

@fdec

+
@fns(st; i;w)

@st

@"t+1(st+1;w)

@st+1

�!
(5.10)

The term @d(xt;fdec())

@fdec
is computed as a derivative of the distortion function. The terms

� @fcl;i(st;xt;w)

@w
and

@fcl;i(st;xt;w)

@st
,

� @fdec(st;i;w)

@w
and @fdec(st;i;w)

@st
, and

� @fns(st;i;w)

@w
and @fns(st;i;w)

@st

are computed by chain-rule di�erentiation (backpropagation) of their respective func-

tions at the given input values.

Equations 5.7, 5.9, and 5.10 together de�ne a recursive relationship which allows

one to �nd "t(st;w),
@"t(st;w)

@w
, and @"t(st;w)

@st
from their corresponding values at step

t+ 1. Note that

"T+1(sT+1;w) = 0; therefore (5.11)

@"T+1(sT+1;w)

@w
= 0 and (5.12)

@"T+1(sT+1;w)

@sT+1

= 0; (5.13)
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which provides initial conditions for recursion. After recursion all the way back to

t = 1,

@"

@w
=
@"1(s1;w)

@w
and (5.14)

@"

@s1
=
@"1(s1;w)

@s1
(5.15)

are known. This method resembles backpropagation-through-time (BPTT) and could

be said to be a variant of BPTT. As usual, for multiple sequences in the training set,

each sequence's gradient is calculated individually and then the gradients are averaged

over the set.

5.3 Stochastic Gradient Descent Training

The recursive form of Equations 5.7, 5.9, and 5.10 implies that, when beginning with

a given initial state s1, at step t there are N t next states st+1 over which terms to be

summed must be calculated. This means that a total number of
PT

t=1N
t such terms

must be calculated in order to �nd the gradients as described in Section 5.2. Since3

for large T ,

TX
t=1

N t � NT+1

N � 1
=

N

N � 1
NT ; (5.16)

the growth in complexity is approximately exponential in T ; therefore computation

of the gradients using this method is prohibitively expensive for nontrivial values of

T . This is the complexity problem alluded to in Section 4.5.

One solution to this problem is to compute an estimate of the true gradients by

stochastically choosing a smaller number of indices at each t and st. In the extreme,

if only a single index is chosen at each step t, the number of terms to be computed is

TX
t=1

1t = T; (5.17)

3This is assuming that N > 1, without which this system can only produce a single output
sequence fx̂tg.
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certainly a more reasonable complexity than N
N�1

NT .

The development of Section 4.5 can be extended to this case. To compute these

estimates, given state st at step t, for each trial choose a random value jt of the

index using distribution qt;1; qt;2; : : : ; qt;N and calculate x̂t and st+1 using that index.

Equations 5.7, 5.9, and 5.10 may then be re-expressed as expected values over many

such trials:

"t(st;w) = Ejt

�
pit

qjt

�
d(xt; x̂t) + "t+1(st+1;w)

��
; (5.18)

@"t(st;w)

@w
= Ejt

"
1

qjt

@fcl;i(st;xt;w)

@w

�
d(xt; x̂t) + "t+1(st+1;w)

�

+
pit

qjt

�
@fdec(st; i;w)

@w

@d(xt; fdec())

@fdec

+
@fns(st; i;w)

@w

@"t+1(st+1;w)

@st+1

+
@"t+1(st+1;w)

@w

�#
;

(5.19)

and

@"t(st;w)

@st
= Ejt

"
1

qjt

@fcl;i(st;xt;w)

@st

�
d(xt; x̂t) + "t+1(st+1;w)

�

+
pit

qjt

�
@fdec(st; i;w)

@st

@d(xt; fdec())

@fdec

+
@fns(st; i;w)

@st

@"t+1(st+1;w)

@st+1

�#
:

(5.20)

Assuming a su�ciently small learning rate, the expected values may be estimated by

the bracketed values for a single sequence of indices fj1; j2; � � � ; jNg. As discussed in

Section 4.5, such estimates e�ectively add zero-mean noise of a controllable amount

(more training time can be sacri�ced for less noise) to the true gradient; the gradient

descent algorithm can tolerate such noise, and may even be helped by it.

The distributions qt must be chosen. Any choice of qt with qt;j 6= 0 for all j and

all t will allow estimates with �nite error. For reasons discussed in Section 4.5.1,

qt = pt is chosen for each t.
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5.4 Centroid Constraint

Section 4.2 introduced a constraint to insure decoder optimality by forcing the decoder

outputs to be centroids for the given encoder. This constraint can be extended to

the state-feedback case. However, the constraint would be seen to depend on terms

for each of all NT possible index sequences. Unfortunately, such computations are

intractable in practice, as was shown for �nding the exact gradient in Section 5.3.

While it is reasonable to use a noisy estimate of gradient in iterative gradient descent

training, enforcing this constraint inexactly by forcing a noisy estimate of the correct

codebook is not a good idea. Therefore this constraint is no longer practical for the

state-feedback case.



Chapter 6

Experiments

6.1 Gauss-Markov Series

For direct comparison to the FSVQ results of Foster, Gray, and Dunham[8], this

stochastic system with state-feedback was trained on a Gauss-Markov source, and

experimental rate-distortion performance was observed.

Speci�cally, the source used was a Gauss-Markov source fyng de�ned by

yn+1 = ayn + rn (6.1)

where frng is a zero-mean unit-variance independent, identically distributed Gaussian

series, and a = 0:9. A training sequence of length 128; 000 samples and a separate

test sequence of the same length were generated. For each of the sequences fxtg, a
sequence of vectors of dimension 4, was made by partitioning fyng into vectors of 4

consecutive samples, that is

xt =
�
y4t y4t+1 y4t+2 y4t+3

�
: (6.2)

Since this data is arti�cial and is not meant to be perceived by humans, any

distortion measure could be used. Therefore, for simplicity, squared di�erence (MSE)

was used as the distortion function. This experimental setup is exactly as in [8], in

order to allow direct comparison to the results of that study.
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Figure 6.1: Performance of Stochastic VQ with State-Feedback, FSVQ, and Plain VQ
for Gauss-Markov Data

Figure 6.1 shows a comparison of performance of stochastic VQ with state-

feedback, FSVQ (with 128 states), and plain VQ on the Gauss-Markov testing and

training data sets. The rate is reported as nominal rate in bits per sample (1
4
log2(N))

rather than as entropy, in keeping with the results in [8]. The FSVQ results are for

\omniscient labeled transition FSVQ," the best of 4 training methods considered in

[8], and come directly from Foster et al. Also shown is the Shannon bound on rate-

distortion performance, which is known since this source is generated from a known

distribution.

For the testing set, which predicts the performance on novel data better than does

the training set, stochastic VQ can perform up to 1:89 dB better than plain VQ and

0:45 dB better than FSVQ, although the improvements fall o� at higher rates. As

expected, since the source has high correlation between vectors in the sequence, both

state-memory methods out-perform plain memoryless VQ by a signi�cant margin.

It is also noteworthy that the di�erence between the training and testing perfor-

mance (\over�tting" of the training data) is much less for stochastic VQ (less than

0:04 dB) than for FSVQ (0:13 dB or higher).
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These results con�rm that the training algorithm for stochastic VQ with state-

feedback works well, and suggest that this schememay be overcoming some of the dif-

�culties of FSVQ (such as greedy next-state decisions, and the �nite-state constraint).

However the Shannon bound shows that there is still much room for improvement,

at least for this type of source.

6.2 Speech Coding

A more practical experiment was undertaken to evaluate the application to speech

coding. The stochastic VQ with state-feedback method was used directly on the

speech waveform, with sets of successive samples partitioned into vector sequences.

This system was used for coding speech sampled at a rate of 8000 hertz, which

is standard for telephony. Four di�erent bit rates were used: 4000 bits per second

(N = 2 with 2-sample length vectors), 8000 bits per second (N = 2, 1-sample vectors),

12679.7 bits per second (N = 3, 1-sample vectors),1 and 16000 bits per second (N = 4,

1-sample vectors).

The results for this system were compared to the state-of-the-art 4800 bits per

second code-excited linear prediction (CELP) speech coder (Federal Standard 1016)

as described in Campbell, et al.[1] In the CELP method, a 240-sample \frame" of

speech is analyzed to extract a 10-tap linear prediction �lter; these 10 parameters

are simply coded with scalar quantization. Then the algorithm searches a codebook

of possible \excitation" input waveforms for the given �lter. The distortion measure

which is being minimized by the search is a special perceptual distortion measure;

this is computed as the power of the di�erence signal (between the original speech

waveform and the �lter's output waveform for that frame) �ltered by a \perceptual

weighting �lter" which depends on the 10 linear prediction parameters for the frame.

More details about the perceptually-weighted �ltering are contained in Appendix A.

1Note that practical implementation of the N = 3 rate directly on an inherently binary channel
requires combiningM successive symbols for a true rate of dM log2 3e

8000

M
bits per second; therefore

the choice of M allows a tradeo� between minimizing wasted bits, or minimizing delay (to gather
M symbols) and complexity (to pack symbols into bits and unpack symbols from bits). Fortunately
the reasonable value M = 5 yields a rate of 12800 bits per second, a waste of only about 1 %.
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The \net" bit rate, without error-correction or synchronization bits, is 4600 bits

per second. This is the rate for a fair comparison with the stochastic method. An

implementation of this CELP coder available via the Internet[2] programmed by the

authors of [1] was used for comparison.

In order that a fair comparison of a numerical distortion measure can be made,

the stochastic VQ with state-feedback is trained to minimize exactly the same

perceptually-weighted-�ltered distortion measure as CELP. This measure is certainly

an improvement over simple MSE, but leaves much to be desired. For example, the

power of a di�erence signal | even a �ltered di�erence signal, as is used here | de-

pends very much on the relative phase of the two waveforms, while simple examples

(such as inverting one of the waveforms) show that phase is not of utmost importance

in aural perception. This suggests that perceptually useless information is being en-

coded at the expense of perceptually important information. For a truly practical

application to speech coding a better distortion measure should be used during train-

ing; however for a �rst attempt | and more importantly, for direct comparison to

CELP | this measure is appropriate. In the results, quality (rather than distortion)

is presented as signal-to-perceptual-noise-ratio (SPNR), the ratio of the signal power

to distortion measure in decibels.

Finally, the computational complexity required to encode and decode is of great in-

terest in speech coding. Certainly complexity is implementation-dependent, but gross

di�erences in complexity tend to persist regardless of implementation. As mentioned,

an implementation of CELP by the authors of [1] was regarded as a reasonable mea-

sure of CELP's complexity when compared to the implementation of stochastic VQ

with state-feedback. Both implementations are written as fairly e�cient programs,

both do oating-point arithmetic, and both were run on a Sun Sparc-20 worksta-

tion. Complexity was measured by using the UNIX time utility program to �nd the

CPU time. Run-time was averaged over several runs; this average time was found for

speech segments of di�erent lengths in order to �nd the marginal processing time per

segment time (that is, factor out the start-up time which would become insigni�cant

as the length of speech segment increases). A complexity of 1:0 on this scale indicates
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that the encoding (or decoding) could be done in real-time on a Sun Sparc-20.

The data used for training and testing of the stochastic VQ system (and evalu-

ation of CELP) was included in the distribution of the CELP implementation. One

speech segment of length from 2:5 seconds to 3:5 seconds from each of three male

and three female speakers comprised the entire data set of six speech segments. All

were native American English speakers, and the samples were recorded in variously

noisy environments, not atypical for practical telephony. The resolution of 16 bits

per sample was more than adequate for the telephone-quality coding to be performed

on these samples. This entire data set was partitioned into the training set (two

male speakers and one female) and testing set (the remaining two females and one

male). The post-training quality results over the testing set, the nominal rates, and

the complexity measures are compared for the stochastic VQ with state-feedback and

for CELP in Figures 6.2, 6.3, and 6.4.

The most obvious advantage of the stochastic VQ over CELP is the di�erence

in encoding complexity. In order to encode at the same bit rate, CELP is about

10 times as complex as stochastic VQ; to achieve the same quality CELP is about 8

times as complex. CELP's complexity comes mostly from the computation required to

evaluate the distortion measure during the codebook search. For each codebook entry

this requires an operation equivalent to �ltering by the linear prediction �lter, then

�ltering the di�erence �lter by the perceptual weighting �lter. On the other hand,

during encoding the stochastic VQ method does no such evaluation of distortion,

much to its advantage.

The comparison of quality to rate in Figure 6.4 shows that the CELP standard can

perform at the same quality as stochastic VQ with state-feedback at about half the

bit rate. Considering the sophistication of the CELP method this is an encouraging

result.

Listening reveals that the CELP-encoded speech sounds rather \synthetic" or

\robotic" (symptomatic of low-rate linear-predictive coding techniques) while the

stochastic VQ-encoded speech sounds \natural" but noisy. As mentioned previously
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listening tests are not a completely fair comparison for this experiment since a subop-

timal distortion measure was used during training. Sample speech segments in their

original and variously coded versions are currently available for listening on the World

Wide Web.[18]

Another point of comparison is the algorithmic delay. Since CELP must process

an entire frame of 240 samples all at once, the algorithm introduces a non-trivial

delay of 30 milliseconds, while the stochastic VQ method which processes vectors of

one or two samples has no algorithmic delay, or an algorithmic delay of one sample

(0:125 milliseconds). As mentioned in Chapter 3 low delay is desirable in telephone

networks.



Chapter 7

Conclusions and Future Directions

Stochastic VQ as presented in this dissertation is a novel technique for data com-

pression which draws upon ideas from the neural network �eld. Contributions of this

method are:

� A small number of parameters can be used, minimizing the penalty of over�t-

ting.

� A training procedure (gradient descent) can train the parameters to an opti-

mum.

� During encoding, this method does not compute the distortion measures over

the codebook, which is advantageous for complex distortion measures.

Stochastic VQ with state-feedback is more useful as it has those advantages, and in

addition:

� The state vector is continuous, as opposed to FSVQ which may only hold a

limited amount of state information in memory.

� The training procedure (gradient descent) seeks an optimum of long-term dis-

tortion, not greedy short-term distortion.

More investigation of the basic algorithm would be of interest. In particular, ex-

perimental comparison to other methods such as those discussed in Section 3.6 would
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be relevant. Comparison to a state-feedback extension of sparse adaptive memory, or

comparison of the memoryless versions of SAM and this work, might be particularly

interesting. Also, the training procedure described in this dissertation took a long

time for the practical speech coding experiment; investigation of methods to speed

training would be especially useful. As a starting point some of the methods used to

speed the usual backpropagation algorithm could be applied here.

Two obvious directions for future research are the application of this work to

compression of still images and video. As has been done for FSVQ, blocks of pixels in

an image are taken as the vectors, and the vectors are considered to be in a sequence

in two directions, down and across. Therefore the state from the block above and the

block to the left are used as input to the encoder and decoder of the current block.

For video coding, the vectors are now a sequence in three directions, with the addition

of the dimension of time. State information comes from the blocks above and to the

left in the same frame, plus the same block in the previous frame (and perhaps its

surrounding blocks). It is possible that the large amount of data required for such

applications would increase the training time beyond practical limits. However, if

training were within reason, one advantage of this method would be the allowance

of a more complicated, perceptually motivated distortion measure without added

encoding complexity. For video, there are no motion compensation computations;

this system would depend on the internal state vectors to convey motion information

between frames.



Appendix A

Perceptually Weighted Distortion

Measure for Speech

This appendix gives some of the details of the perceptually weighted �lter used to de-

termine the distortion for CELP and for the speech coding experiment of Section 6.2.

For further reference see Campbell et al.[1]

This distortion measure is computed one frame at a time, where a frame is 240

samples. Since the sampling rate is 8000 Hertz, this represents 30 milliseconds of

sound. First x, the 240 samples of the original speech sound, are acquired, then these

samples are Hamming-windowed. From the result of that operation, an autocorre-

lation analysis and the Levinson-Durbin algorithm are used to obtain a 10th-order

linear prediction model. Let these 10 coe�cients be called

c0; c1; : : : ; c9;

then a new set of 10 coe�cients ai are obtained from the ci coe�cients by a 15 Hertz

bandwidth expansion, that is,

ai = Aci; for i = 0 to 9; (A.1)

where A = 0:994: (A.2)
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The ai coe�cients form the denominator of the linear prediction �lter used by CELP,

LP �lter =
1

A(z)
; where (A.3)

A(z) =

9X
i=0

aiz
�i: (A.4)

Once the linear prediction �lter is known, the perceptually weighted �lter is found

by generating a new set of 10 coe�cients bi by a further bandwidth expansion of the

ai coe�cients,

bi = Bai; for i = 0 to 9; (A.5)

where B = 0:8: (A.6)

Then the perceptual weighting �lter is formed as

PW �lter =
A(z)

B(z)
; where (A.7)

A(z) =

9X
i=0

aiz
�i; and B(z) =

9X
i=0

biz
�i: (A.8)

The output of this �lter is to be truncated at the end of the 240-sample frame, so it

is convenient to express this truncated �ltering operation as a 240 by 240 matrix F.

Note that a more e�cient implementation will always use the actual �lter A(z)

B(z)
, but

considering the �ltering in terms of a matrix will make the formula for the distortion

measure simpler, and will also elucidate an interesting result in Section A.1. The

matrix F can be expressed by considering pt, the impulse response of the perceptual

weighting �lter, which need only be found from t = 0 to t = 239. Then, since the

�lter is causal (pt = 0 for t < 0),

F =

0
BBBBBBB@

p0 0 : : : 0 0

p1 p0 : : : 0 0

: : : : : : : : : : : : : : : : : : : : : :

p238 p237 : : : p0 0

p239 p238 : : : p1 p0

1
CCCCCCCA
: (A.9)
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Finally, the distortion measure for a frame is the power of the �ltered di�erence signal

between the original and coded speech, which can now be expressed easily as

d(x; x̂) = kF(x̂� x)k2: (A.10)

The perceptual weighting �lter exaggerates the e�ect of some frequencies on the

distortion, and de-emphasizes other frequencies, based on the original signal. This

is an attempt to account for so-called masking e�ects in hearing. However, clearly

this distortion measure takes phase di�erences into account while it may not be so

important in actual perception. While the perceptual suitability of this measure is

not ideal, it is clearly better than MSE, and the complexity is certainly lower than

phase-invariant distortion measures such as Itakura-Saito distortion.

A.1 Using the PerceptualWeighted Distortion Mea-

sure with Gradient Descent Training

A new �lter A(z)

B(z)
must be derived for each frame. However, when training with a �xed

known data set, the values of ai and bi may be precomputed for each frame ahead of

time, then stored for retrieval during training. This precomputation could be done

once (with the �lters stored in a �le) or could be done each time the training program

is initialized (with the �lters stored in memory).

When using the �lter with a gradient descent algorithm such as in Section 6.2,

taking the derivative of Equation A.10 reveals an interesting computational shortcut.

Let the vector e be the result of the �ltering,

e = F(x̂� x); (A.11)

then the error gradient at e is

@d(x; x̂)

@e
=

@kek2
@e

= 2e: (A.12)

Then the gradient at the decoder output x̂ is found as

@d(x; x̂)

@x̂
=

@e

@x̂

@d(x; x̂)

@e
= FT (2e): (A.13)
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However, because of the symmetry of F, its transpose FT can be seen to represent

the operation of �ltering backward in time using the perceptually weighted �lter. This

suggests the following e�cient algorithm for computing the gradient of distortion at

x̂ for each frame:

1. Compute the vector e as the �rst 240 outputs of the perceptually weighted �lter
A(z)

B(z)
applied to input (x̂� x).

2. If desired, compute the total distortion for this frame as d(x; x̂) = kek2.

3. Compute the gradient vector @d(x;x̂)

@x̂
as the �rst 240 outputs of the perceptually

weighted �lter applied backward in time to input (2e).
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