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ABSTRACT

A method is proposed to improve any temporal pattern
recognition system by time warping each pattern before
presentation to the recognition system. The time warping
function for a pattern is generated by repeated local appli-
cation of a neural network to sections of the pattern. The
output of this neural network is the slope of the warping
function, and the internal weight parameters are trained by
a gradient descent learning rule which attempts to mini-
mize the recognition system's error. Experimental results
show that this method can improve recognition of vowel
phonemes.

1. INTRODUCTION

In certain temporal pattern recognition problems such as
speech recognition, part of the variability within a class of
patterns is due to time-compression or time-expansion of
the pattern during production. This compression or expan-
sion is not necessarily uniform across the pattern, that is,
some parts of the pattern may be compressed in time|
\speeded up"|and some parts may be expanded in time|
\slowed down". A recognition method which counterac-
tively compresses and expands parts of the pattern during
recognition, a process known as time warping, will suppos-
edly improve pattern recognition by reducing pattern vari-
ability within each class.

Time warping approaches are often used for speech re-
cognition tasks. Examples are dynamic programming and
hidden Markov models[1]. In this paper, I propose a tech-
nique which will �rst time warp the input, and then present
it to a recognition system. Unlike other methods, the time
warping neural network will learn to optimize its warping to
minimize the error incurred at the output of the recognizer.
The only requirement of the recognition system is that it
be able to provide the error gradient at its pattern inputs.

2. TIME WARPING FOR IMPROVED

RECOGNITION

A recognition system has K + 1 vector inputs ok, k =
0; 1; 2; : : :K, each with M scalar components ok;1, ok;2,
: : :ok;M . The data available to those inputs is a vector-
valued function of time i(t) with M continuous component
functions i1(t); i2(t); : : : iM(t). Each input ok will sample
i(t) at a di�erent moment in time. A uniform sampling
method will cause the time between consecutive samples to

be a uniform positive value T , that is,

ok = i (Tstart + kT ) ; k = 0; 1; 2; : : :K (1)

where Tstart is the time of the �rst sample. Using the sam-
ples of i(t) as input, the recognition system generates an
output result, which is in error by an amount ". The error
is a function of the inputs 1

ok,

" = F" (o0;o1; : : :oK) : (2)

The sampling method could be improved for lower error.
Suppose there is a strictly increasing continuous function
of time �(t), known as the time warping function, which is
used to determine the sample times by

ok = i (� (Tstart + kT )) ; k = 0; 1; 2; : : :K: (3)

Note that uniform sampling will occur for the special case
�(t) = t. If, for a particular pattern, a time warping func-
tion which minimizes the recognizer's error can be found,
then using that warping function (as in Equation 3) is pre-
ferable to uniform sampling (as in Equation 1). The goal
of the proposed system, after having been trained, is to
generate for each pattern a time warping function which is
expected to minimize the recognizer error.

3. A TIME WARPING NEURAL NETWORK

STRUCTURE

Figure 1 shows a neural network structure which examines
the data i(t) and then time warps it before presentation to
the recognition system. Let �k be the sample time of ok,
that is,

ok = i(�k): (4)

Now the values of �k represent the time warping function,

�k = �(Tstart + kT ) : (5)

As a starting point, let �0 be a predetermined constant.
Let �k+1 be determined from �k in the following way: a
feedforward neural network \placed" at �k takes samples
of i(t) at N times relative to �k, speci�cally, at times �k +
t1; �k+ t2; : : : �k+ tN . Note that the tn values, which de�ne

1Of course, the error also depends on the desired \target"
value of the recognizer output for this i(t), as well as internal
parameters of the recognizer. However this discussion is only
concerned with the e�ect of the ok on ", so these other values
are taken as constants.
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Figure 1: Time Warping Neural Network Structure

an \input window" about �k, are �xed but can be neg-
ative, zero, or positive. The neural network produces one
positive-valued output using its internal weight parameters,
represented by the vector w, and the N vector samples of
i(t). This output is added to �k to give �k+1. Then another
copy of the network with identical weights w is placed at
�k+1, and the process is repeated to determine �k+2 from
�k+1 using the N samples of i(t) relative to �k+1, and so
on. Using the function FW () to represent the output of the
neural network, if 0 � k � K � 1,

�k+1 = �k+ (6)

[FW (w;h1;h2; : : :hN )]jhn=i(�k+tn) for n=1;2;:::N
:

By sampling in a time window (determined by the tn
values) about �k, it is hoped that the neural network can
make a judgment about the speed of production of i(t) at
t = �k. From such knowledge, an appropriate interval to the
next sample should be selected. It is reasonable to restrict
the next sample from being placed farther in the future
than �k+max

n
(tn), since the network should only be able to

select a next-sample which it can \see" in its time window of
input. This can be easily accomplished by selecting values
of tn and selecting an activation function for the output
such that 0 < FW () < max

n
(tn):

4. A GRADIENT DESCENT LEARNING RULE

The time warping neural network's weight parameters w
need to be established by a training procedure with a goal
to reduce the recognition error. An iterative gradient de-
scent algorithm can be used. An initial weight vector is
selected2 (for example, randomly) and then the weights are
iteratively adjusted along the error gradient by wnext =
wcurrent��

@"

@wcurrent
;where � is a positive constant known

as the learning rate.

2Upon initialization of the training procedure, it is desirable
for the system to behave nearly as if no warping is taking place,
that is, FW � T . This can be achieved by appropriate choice of
output activation function and initialization of weights.

The error gradient @"

@w needs to be found. From Equa-
tion 2,

@"

@w
=

KX
k=0

MX
m=1

@F" (o0;o1; : : :oK)

@ok;m

@ok;m

@w
: (7)

Any recognition system from which @F"()

@ok;m
can be deter-

mined may be used for this training procedure. If the recog-
nition system is a feedforward neural network, for example,
those values can be determined by backpropagation[2].

Assuming that the @F"()

@ok;m
values are available, the next

step is to determine the values of
@ok;m
@w . From Equation 4,

@ok;m

@w
=

�
@im(t)

@t

�����
t=�k

@�k

@w
: (8)

The time derivative @im(t)

@t
is available directly from i(t).

Keeping in mind that �0 is constant,
@�0
@w = 0. For nonzero

values of k, it can be found from Equation 6 that

@�k+1

@w
=

"
@FW (w;h1;h2; : : :hN )

@w
+
@�k

@w

 
1 + (9)

NX
n=1

MX
m=1

@FW (w;h1;h2; : : :hN)

@hn;m�
@im(t)

@t

�����
t=�k+tn

!#�����
hn=i(�k+tn) for n=1;2;:::N

:

As before, the values of the time derivatives @im(t)

@t
are

available directly from i(t). For each copy k of the time

warping network, the values of @FW ()

@w and @FW ()

@hn;m
can be

determined by a variant of the backpropagation algorithm.
Unlike \usual" backpropagation, the gradient of the out-
put FW (rather than the error) should be determined, and
the gradient should be propagated all the way back to the
neural network's inputs (hn). Once these values are deter-
mined, starting with @�0

@w = 0 and using Equation 9, all the

values of @�k
@w can be determined. Then the error gradient

@"

@w is found from Equations 7 and 8.
Although in practice, i(t) may be represented by dis-

crete samples, it was assumed that i(t) is a continuous func-
tion of time, and this algorithm will require values of i(t)

and @i(t)
@t

at arbitrary times t. Determining these values ex-
actly for each time t from the original samples of i(t) may
be very computationally intensive. One possible compro-
mise is to generate adequately oversampled versions of i(t)

and @i(t)
@t

, and then each time a value is required, to select
the oversampled value at the time closest to the actual t.

5. EXPERIMENTAL RESULTS

An experimental comparison of a recognition system with
and without the addition of time warping neural networks
of various sizes was made. The input data for the network
were generated by preprocessing a subset of the DARPA
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Figure 2: Recognition Error for Various Combinations of
Recognition and Time Warping Network Sizes

TIMIT speech database for 6 RASTA-PLP[5] features. The
patterns selected for training and testing were members of
20 vowel phoneme classes spoken by multiple male and fe-
male speakers. Vowels are expected to bene�t more than
other phonemes from time warping, since they undergo
more warping during production. The recognition system
used was an integrated segmentation and recognition (ISR)
neural network[3], a variant of the time-delay neural net-
work[4]. The recognition system's error metric was the clas-
si�cation cross-entropy as in [3]. Di�erent sizes of recogni-
tion networks were used, with the size varied by changing
the number of unique hidden units but keeping all other
aspects of the network structure constant. Furthermore,
time warping networks of various sizes di�ered only in the
number of hidden units. While each additional hidden unit
in the recognition network added 241 unique weight and
bias parameters, each additional hidden unit in the time
warping network added only 32 parameters.

Figure 2 shows the results of training the recognition
and time warping networks simultaneously for several com-
binations of sizes of the two networks. Note that a \size
0" time warping network corresponds to no time warping
network, that is, a recognition network only. Each point
represents the minimum test set error, average per pattern,
during the course of a single training run; that error is ex-
pected to approximate the average over many training runs.
Test set error represents the performance on novel data.
Figure 2 appears to show a trend toward optimal recogni-
tion performance with a time warping network of a certain
size.

Figure 3 shows time warping functions for �ve instances
of the same phoneme (ay) for the best system of Figure 2.
Indeed the network has learned to use diverse time warping
functions for di�erent instances within a class, supporting
the contention that time warping works by reducing pattern
variability within each class.
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Figure 3: Time Warping Functions for Five Instances of a
Phoneme
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