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1 Introduction

Memoryless vector quantization (VQ) is the process of representing a continuous-
valued vector by a vector function of a discrete-valued index. Ideally the chosen
vector is a low-error representation of the original vector. In \plain" Lloyd-optimal
VQ, an encoder deterministically chooses the index of the lowest-error vector in a

collection of a �nite number of vectors (the codebook). Then a decoder simply looks
up that code vector in the codebook using the encoded index. A simple training
scheme can be used to design an optimal codebook for this scheme.

A novel system which performs VQ stochastically is introduced. This system
uses an encoder which produces, for a given vector to be quantized, a probability
distribution over the N indices, then randomly chooses one of the N indices using

that distribution. The structure used to compute the distribution is a feedforward
neural network classi�er[4]. The decoder is a simple codebook lookup exactly as in
plain VQ. The performance of this memoryless stochastic schememust be suboptimal.

By taking the error to be minimized as the expected value, over the set of ran-
dom choices, of the error between original vector and decoder output, it is possible

to �nd the error gradient over the encoder/classi�er's outputs and decoder's code-

book vectors. Then gradient descent (backpropagation) may be used to train all the
system's parameters in order to minimize the error.

When the data to be quantized is a correlated sequence of vectors, each vector

could be quantized separately by a memorylessVQ system. However, performance can

be improved in theory by using some state information about the past. The usual
state-feedback extension of plain VQ is Finite-State Vector Quantization (FSVQ).

Unfortunately, there is no known optimal training procedure for FSVQ.
The stochastic VQ scheme can also be extended to use feedback state infor-

mation. Unlike for FSVQ, the optimal training scheme (given the structure of the

system) is known. By using gradient descent (backpropagation-through-time), the
system can be trained to optimize its parameters.

Experimental results show that this stochastic system with state-feedback can
perform up to 0:45 dB better than FSVQ on a Gauss-Markov source.
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Figure 1: Encoder for Stochastic VQ System

2 Stochastic Vector Quantization

The system introduced in this section performs the same task as plain memoryless

VQ, that is, generates a representation of a continuous-valued vector using a discrete

index. As in plain VQ, once an index is generated by the encoder, the decoder simply

outputs the vector found at the indexed location in the codebook table. However the
encoder uses an entirely di�erent method to generate that index.

Speci�cally, as illustrated in Figure 1, the encoder computes a probability dis-
tribution p over indices 1 through N using the formula

p = fcl(x)

= fnormexp

�
bu +Wuftanh(bl +Wlx)

�
; where

(1)
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exp(yi)

0
BBB@
exp(y1)
exp(y2)

...
exp(yN )

1
CCCA (2)

and where ftanh(z) is the hyperbolic tangent function tanh() applied component-wise
to each element of z. The function fcl(x) is of the type used for multinomial classi�-
cation problems in the neural network �eld[4]. The parameters bu, bl, Wu, and Wl

are collectively known as the \weights" of the system.1 Note that if the weights and
x are �nite, since the tanh() function's range is �nite, it can be shown that all the

elements of p are limited to the range (0; 1). In addition, the elements of p sum to

1. These properties allow p to be interpreted as a probability distribution.
The distribution p is used by a random index generator to choose an index i.

Then x̂, the quantized representation of x, is generated by looking up the ith vector
x̂i in the codebook C =

�
x̂1 x̂2 : : : x̂N

�
. Since the behavior of the entire system is

stochastic (unlike plain VQ), the reproduction error for a given vector is an expected

value over the random choice of index.

1The subscripts \u" and \l" refer to the \upper layer" and \lower layer" in neural network
terminology.



2.1 Suboptimality

The decoder codebook could satisfy the centroid condition for the encoder. However,

it can be shown that this encoder structure can never satisfy the nearest-neighbor con-

dition exactly. Lloyd-optimality would require the distribution p to be deterministic2

for a single index over each Voronoi region of the domain of x. That is, all the ele-

ments of p would be exactly 0, except for a single element which would be exactly 1.

But two facts about fcl(x) clearly con
ict with this requirement: the elements of p

can approach 0 or 1 but can never exactly equal either value, and the Lloyd-optimal

discontinuous transition in the value of p at the boundaries between Voronoi regions

can only be approximated by the continuous function fcl(x). For example, if the dis-

tortion function is mean squared error, the Voronoi regions are convex polytopes; the

angular junctions of 3 or more polytopes are di�cult to approximate well with an

fcl(x) with a small number of parameters. It is notable however that for the special

case N = 2 there are no such junctions, and the only region boundary is a single
hyperplane which can be asymptotically achieved with a minimal-parameter fcl(x).

By itself this suboptimal schememay not be useful. However the state-feedback

extension of this scheme (discussed later in Section 3) can outperform the usual state-
feedback extension of Lloyd-optimal VQ.

2.2 Randomness in Quantization

The use of randomness in quantization is not a new idea. Scalar dithering is a random
technique that has long been used in scalar waveform coding[2]. This stochastic VQ
scheme might be thought of as a kind of \vector dithering". Both techniques use a
random choice of index when encoding. Unlike plain VQ, this results in error which is
not a purely deterministic function of the signal being quantized. For signals which are

to be perceived by humans, such as sound waveforms or pixel mapped images, error
which is not perfectly correlated with the original signal may be less perceptible than
correlated error, even if the nominal distortion measure is calculated to be higher.
For example in scalar quantization of sound waveforms with a low value of N , the
error from a plain VQ system might be heard as degrading \fuzz" distortion, while

the error from a quantization system with dithering might be perceived as a \clean"

signal and white noise heard together. An appropriate perceptual distortion measure
for such signals would correctly model these e�ects by penalizing for correlation of
error and signal, which would imply that the optimal VQ scheme must be stochastic.

2.3 Gradient Descent Training

The encoder's weight parameters and the decoder's codebook vectors are system

parameters which need to be trained. At this point the distortion function is required

to be continuous and di�erentiable. (Mean squared error is an example of such a
function.) Then for this scheme, the total distortion to be minimized over a training

2This assumes a deterministic distortion function; see Section 2.2.



set of vectors x is a continuous and di�erentiable function of all the parameters. This

allows the use of an iterative gradient descent algorithm to seek a set of parameters

which minimize distortion.

An initial set of parameters is selected (for example, randomly) and then the

parameters are iteratively adjusted along the gradient of error " by

wnext = wcurrent � �
@"

@wcurrent

; (3)

where � is a positive constant known as the \learning rate," and w represents all

system parameters. With a su�ciently small �, w will eventually settle in a local

minimum of ", which is also usually3 the global minimum.

The gradient over the parameters must be found. First consider the distortion

" for a single training set vector x, which is computed as an expected value

" =

NX
i=1

pid(x; x̂i) (4)

where d(x; x̂i) is the given distortion function (for example,
PN

i=1
(x�x̂i)

2). Therefore

@"

@x̂i

= pi
@d(x; x̂i)

@x̂i

; 8i (5)

and

@"

@pi
= d(x; x̂i); 8i: (6)

Equation 5 gives the gradient for the codebook parameters, and Equation 6 can be
used to �nd the gradient of the encoder's weight parameters. From @"

@pi
the chain rule

of di�erentiation may be used to �nd the gradient of " at the inputs of the fnormexp()
function. This gradient in turn can be used to �nd @"

@bu
, @"
@Wu

, and the gradient at the
outputs of the ftanh() function. Again the chain rule is used to �nd the gradient at the
inputs of the ftanh() function, from which @"

@bl
, @"

@Wl
, and @"

@x
(if desired) can be found.

This method of repeatedly applying the chain rule to propagate the computation
of gradient further back (toward the ultimate input of the function) is known as

\backpropagation" in the neural network �eld. After backpropagation the gradient
over all parameters is known.

Since there are usually multiple vectors x in the training set, the expected

value of the gradient over the entire set is used for gradient descent. This is simply

found as an average (weighted by any prior probabilities over the set) of the gradients

computed for each individual x.

3As the number of parameters increases the likelihood of settling in a non-global minimum be-
comes increasingly smaller; non-global minima are usually only a concern for very small numbers of
parameters, say, less than 20. Of course this is all dependent on the speci�c error function " = f"(w).
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Figure 2: VQ with State Feedback

3 Stochastic VQ With State Feedback

Many sources to be quantized have memory, that is, there is correlation between dif-
ferent samples. Unlike memoryless VQ, a system which can use internal state memory

about the past can take advantage of that correlation to improve performance. Fig-
ure 2 shows a general structure for such a system, which is known as a recursive

coding system.
Finite-State Vector Quantization (FSVQ) is a recursive extension to memoryless

Lloyd-optimal VQ. In FSVQ the state is a discrete index from 1 to Ns which selects

one codebook from a set of Ns codebooks. That codebook is then used by the encoder
and decoder in the usual Lloyd-optimal way. Nonoptimal ad hoc methods used to
train the codebooks and next-state function can yield improvements over memoryless

VQ, but there is no known optimal training method for the FSVQ codebooks nor for
the next-state function[5].

However a recurrent extension to the stochastic VQ scheme of Section 2 can be

trained to optimality. As the results of Section 4 show, this optimally trained recursive

system based on a suboptimal memoryless structure can sometimes outperform a
non-optimally trained recursive system based on an optimal memoryless structure

(FSVQ).
Figure 3 shows the structure of the system. The state st is a continuous-valued

vector. The encoder is like the stochastic encoder of Section 2 except that fcl() must

be expanded to accommodate the additional input st:

pt = fcl(xt; st)

= fnormexp

�
bu +Wuftanh(bl +Wl,xxt +Wl,enc,sst)

� (7)
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Figure 3: Stochastic VQ with State Feedback

In order to reduce complexity, the decoder and the next-state function are com-
bined. As in the memoryless case, the index it is used to select the vector Cit from a
codebook matrix C. Then x̂t and st+1 are found by

st+1 = fns(Cit ; st)

= ftanh
�
bns +Wnsftanh(bl,dec +Wl,dec,CCit +Wl,dec,sst)

� (8)

and

x̂t = fdec(Cit ; st)

= bbias +Wscaleftanh
�
bu,dec+Wu,decftanh(bl,dec +Wl,dec,CCit +Wl,dec,sst)

� (9)

whereWscale is a diagonal matrix. The terms bbias and Wscale allow the ranges of the
components of x̂t to be unrestricted. The argument of the common term

ftanh(bl,dec +Wl,dec,CCit +Wl,dec,sst) (10)

can be reformulated by de�ning a new codebook C0 such that

C
0 = (bl,dec;bl,dec; : : :bl,dec) +Wl,dec,CC; (11)

which allows the computation of merely

ftanh(C
0

it
+Wl,dec,sst) (12)

further reducing the implementation complexity.

3.1 Gradient Descent Training

The parameters of the system which need to be trained are bu, Wu, bl, Wl,x, and

Wl,enc,s from Equation 7; bns and Wns from Equation 8; bbias, Wscale, bu,dec, and
Wu,dec from Equation 9; C0 andWl,dec,s from Equation 12; and an initial state vector4

4The value of s1 may be established arbitrarily (for example 0) but the additional complexity to
train the value to optimality is negligible.



s1. Letw represent all those system parameters except s1. Assuming a continuous and

di�erentiable distortion function, since the total distortion is a continuous function

of w and s1, a gradient descent algorithm can be used to train w and s1.

Consider a sequence of T vectors fx1;x2; : : :xTg. De�ne the total current and

future distortion at step t given this sequence, given that the current state is st, and

given that the system parameters are w, as "t(st;w); that is

"t(st;w) =

NX
i=1

pit

�
d(xt; x̂t) + "t+1(st+1;w)

�
: (13)

The total distortion over the entire sequence, which is the quantity to be minimized,

is

" = "1(s1;w): (14)

The gradients @"

@w
and @"

@s1
need to be found. Omitting some arguments for

readability, di�erentiation of Equation 13 gives

@"t(st;w)

@w
=

NX
i=1

 
@fcl;i(st;xt;w)

@w

�
d(xt; x̂t) + "t+1(st+1;w)

�

+ pit

�
@fdec(st; i;w)

@w

@d(xt; fdec())

@fdec

+
@fns(st; i;w)

@w

@"t+1(st+1;w)

@st+1

+
@"t+1(st+1;w)

@w

�!
(15)

and

@"t(st;w)

@st
=

NX
i=1

 
@fcl;i(st;xt;w)

@st

�
d(xt; x̂t) + "t+1(st+1;w)

�

+ pit

�
@fdec(st; i;w)

@st

@d(xt; fdec())

@fdec
+

@fns(st; i;w)

@st

@"t+1(st+1;w)

@st+1

�!

(16)

The term @d(xt;fdec())

@fdec
is computed as a derivative of the distortion function. The terms

@fcl;i(st;xt;w)

@w
and

@fcl;i(st;xt;w)

@st
, @fdec(st;i;w)

@w
and @fdec(st;i;w)

@st
, and @fns(st;i;w)

@w
and @fns(st;i;w)

@st
are

computed by chain-rule di�erentiation (backpropagation) of their respective functions

at the given input values.
Equations 13, 15, and 16 together de�ne a recursive relationship which allows

one to �nd "t(st;w),
@"t(st;w)

@w
, and @"t(st;w)

@st
from their corresponding values at step

t+ 1. Note that "T+1(sT+1;w) = 0, therefore
@"T+1(sT+1;w)

@w
= 0 and

@"T+1(sT+1;w)

@sT+1
= 0,

which provides initial conditions for recursion. After recursion all the way back to

t = 1, @"

@w
= @"1(s1;w)

@w
and @"

@s1
= @"1(s1;w)

@s1
are known. The method of recursively

calculating backward in t to �nd the error gradient is known in the neural network

�eld as backpropagation-through-time (BPTT)[4, 3]. As usual, for multiple sequences

in the training set, each sequence's gradient is calculated individually and then the
gradients are averaged over the set.



3.2 Stochastic Gradient Descent Training

The recursive form of Equations 13, 15, and 16 implies that, when beginning with a

given initial state s1, at step t there are N t next states st+1 over which terms to be

summed must be calculated. This means that a total number of
PT

t=1
N t such terms

must be calculated in order to �nd the gradients as described in Section 3.1. Since5

for large T ,
PT

t=1 N
t � NT+1

N�1
, the growth in complexity is nearly exponential in T ;

therefore computation of the gradients using this method is prohibitively expensive

for nontrivial values of T .

One solution to this problem is to compute an estimate of the true gradients by

stochastically choosing a smaller number of indices at each t and st. In the extreme,

if only a single index is chosen at each step t, the number of terms to be computed isPT

t=1 1
t = T , a much more reasonable complexity than NT+1

N�1
.

To compute these estimates, given state st at step t, for each trial choose a

random value jt of the index using distribution qt;1; qt;2; : : : ; qt;N and calculate x̂t and
st+1 using that index. Equations 13, 15, and 16 may then be re-expressed as expected
values over many such trials:

"t(st;w) = Ejt

�
pit

qjt

�
d(xt; x̂t) + "t+1(st+1;w)

��
; (17)

@"t(st;w)

@w
= Ejt

"
1

qjt

@fcl;i(st;xt;w)

@w

�
d(xt; x̂t) + "t+1(st+1;w)

�

+
pit

qjt

�
@fdec(st; i;w)

@w

@d(xt; fdec())

@fdec

+
@fns(st; i;w)

@w

@"t+1(st+1;w)

@st+1

+
@"t+1(st+1;w)

@w

�#
;

(18)

and

@"t(st;w)

@st
= Ejt

"
1

qjt

@fcl;i(st;xt;w)

@st

�
d(xt; x̂t) + "t+1(st+1;w)

�

+
pit

qjt

�
@fdec(st; i;w)

@st

@d(xt; fdec())

@fdec
+

@fns(st; i;w)

@st

@"t+1(st+1;w)

@st+1

�#
:

(19)

Assuming a su�ciently small learning rate, the expected values may be estimated by
the bracketed values for a single sequence of indices fj1; j2; � � � ; jNg. Such estimates

e�ectively add zero-mean noise to the true gradient. The gradient descent algorithm

can tolerate such noise, which can even be helpful in avoiding non-global minima[3].
The distributions qt must be chosen. Any choice of qt with qt;j 6= 0 for all j and

all t will allow estimates with �nite error. For simplicity qt = pt is chosen for each t.

5This is assuming that N > 1, without which this system can only produce a single output
sequence fx̂tg.
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Figure 4: Performance of Stochastic VQ with State-Feedback, FSVQ, and Plain VQ

for Gauss-Markov Data

4 Experimental Results

For direct comparison to the FSVQ results of Foster, Gray, and Dunham[5], this
stochastic system with state-feedback was trained on a Gauss-Markov source, and
experimental rate-distortion performance was observed.

Speci�cally, the source used was a Gauss-Markov source fyng de�ned by

yn+1 = ayn + rn (20)

where frng is a zero-mean unit-variance independent, identically distributed Gaussian
series, and a = 0:9. A training sequence of length 128; 000 samples and a separate
test sequence of the same length were generated. For each of the sequences fxtg,
a sequence of vectors of dimension 4, was made by partitioning fyng into vectors
of 4 consecutive samples, that is xt =

�
y4t y4t+1 y4t+2 y4t+3

�
. Squared di�erence

(MSE) was used as the distortion function. This experimental setup is exactly as in
[5].

Figure 4 shows a comparison of performance of stochastic VQ with state-

feedback, FSVQ, and plain VQ on the Gauss-Markov testing and training data sets.
The rate is reported as nominal rate in bits per sample (1

4
log2(N)) rather than as

entropy, in keeping with the results in [5]. The FSVQ results are for \omniscient
labeled transition FSVQ," the best of 4 training methods considered in [5].

For the testing set, which predicts the performance on novel data better than
does the training set, stochastic VQ can perform up to 1:89 dB better than plain VQ

and 0:45 dB better than FSVQ, although the improvements fall o� at higher rates. It
is also noteworthy that the di�erence between the training and testing performance

(\over�tting" of the training data) is much less for stochastic VQ (less than 0:04 dB)

than for FSVQ (0:13 dB or higher).
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